

Vestas Wind Systems A/S

2025 CDP Corporate Questionnaire 2025

01/12/2026, 10:04 am

Classification: Confidential

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

EUR

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

Publicly traded organization

(1.3.3) Description of organization

Already avoided the emission of more than 1.9 billion tonnes of CO₂. For 40 years, Vestas has operated in the field of wind power. Vestas has the wind industry's largest installed base of more than 189 GW of wind turbines in more than 88 countries - we have installed more wind power than anyone else. Every single project represents a journey in itself, helping us to mature the capabilities and know-how that we offer today to our business partners in order to widen wind energy's footprint across new territories. Through our industry-leading smart data capabilities and unparalleled 155 GW of wind turbines under service, we use data to interpret, forecast, and exploit wind resources and deliver best-in-class wind power solutions. Together with our customers, Vestas' more than 30,000 employees are bringing the world sustainable energy solutions to power a bright future. With a vision to become the global leader in sustainable energy solutions, everything we do revolves around the development and deployment of sustainable energy solutions. Every day, our employees help to create a better world by designing, manufacturing, installing, developing, and servicing wind energy and hybrid projects all over the world. With 189 GW of wind turbines installed in 88+ countries, our sustainable energy solutions have already avoided the emission of more than 2 billion tonnes of CO₂ into the atmosphere and contributed to a more sustainable energy system. We have more than four decades of experience in wind energy and were the first company to reach the 100 GW landmarks for both the installation and service of wind turbines. As such, we believe we have already played a crucial role in laying the foundations for the sustainable era, and that we are uniquely positioned to show the path to a sustainable planet. Wind energy is our heritage and core competence. We believe wind will form the backbone of the sustainable energy systems of the future, and we remain focused on developing solutions that accelerate the energy transition and strengthen Vestas' continued leadership in wind. At Vestas, sustainability is grounded in our four corporate values: simplicity, collaboration, accountability and passion. Sustainability at Vestas means reducing or eliminating

negative environmental and social impacts, as well as maximising the value that our business and products provide for our customers, employees, shareholders, suppliers, local communities, and the planet at large. It also means upholding sustainability in governance structures. We believe these efforts will help to elevate the standards of our industry as a whole. "At Vestas, sustainability is the business we are in, it's one of the key purposes that our more than 30.000 employees come to work every day - to make the world a more sustainable place. Now - with the Vestas Sustainability Strategy, we are embedding sustainability into everything we do as we become the global leader in sustainable energy solutions" Henrik Andersen, Group President & CEO at Vestas.

[Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

(1.4.1) End date of reporting year

12/30/2024

(1.4.2) Alignment of this reporting period with your financial reporting period

Select from:

Yes

(1.4.3) Indicate if you are providing emissions data for past reporting years

Select from:

Yes

(1.4.4) Number of past reporting years you will be providing Scope 1 emissions data for

Select from:

1 year

(1.4.5) Number of past reporting years you will be providing Scope 2 emissions data for

Select from:

1 year

(1.4.6) Number of past reporting years you will be providing Scope 3 emissions data for

Select from:

1 year

[Fixed row]

(1.4.1) What is your organization's annual revenue for the reporting period?

17295000000

(1.5) Provide details on your reporting boundary.

	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?
	Select from: <input checked="" type="checkbox"/> Yes

[Fixed row]

(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

ISIN code - bond

(1.6.1) Does your organization use this unique identifier?

Select from:

Yes

(1.6.2) Provide your unique identifier

DK0061539921

ISIN code - equity

(1.6.1) Does your organization use this unique identifier?

Select from:

No

CUSIP number

(1.6.1) Does your organization use this unique identifier?

Select from:

No

Ticker symbol

(1.6.1) Does your organization use this unique identifier?

Select from:

No

SEDOL code

(1.6.1) Does your organization use this unique identifier?

Select from:

No

LEI number

(1.6.1) Does your organization use this unique identifier?

Select from:

No

D-U-N-S number

(1.6.1) Does your organization use this unique identifier?

Select from:

No

Other unique identifier

(1.6.1) Does your organization use this unique identifier?

Select from:

No

[Add row]

(1.7) Select the countries/areas in which you operate.

Select all that apply

- Peru
- Chile
- China
- Egypt
- India
- Canada
- France
- Greece
- Jordan
- Mexico
- Belgium
- Denmark
- Finland

- Italy
- Japan
- Kenya
- Spain
- Brazil
- Norway
- Poland
- Sweden
- Turkey
- Austria
- Morocco
- Romania
- Senegal

- Germany
- Ireland
- Bulgaria
- Mongolia
- Portugal
- Thailand
- Viet Nam
- Saudi Arabia
- South Africa
- Taiwan, China
- Republic of Korea
- United States of America
- Ukraine
- Uruguay
- Argentina
- Australia
- Netherlands
- New Zealand
- Philippines
- United Kingdom of Great Britain and Northern Ireland

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

- Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

- Upstream value chain
- Downstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

- Tier 1 suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

Tier 2 suppliers

(1.24.7) Description of mapping process and coverage

All Tier 1 suppliers of Vestas undergo a comprehensive onboarding and due diligence process, which includes rigorous screening and assessments prior to contracting. We also conduct on-site or online evaluations to ensure the quality and performance of our suppliers. This approach not only monitors their performance but also strengthens our business relationships with them. Currently, we are striving for greater transparency in our supply chain through the Supply Chain Transparency initiative, which is in its initial stages. This initiative aims to enhance the visibility of our Tier 2 suppliers by engaging with and collecting data from our Tier 1 suppliers.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

	Plastics mapping	Value chain stages covered in mapping
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes, we have mapped or are currently in the process of mapping plastics in our value chain</p>	<p>Select all that apply</p> <p><input checked="" type="checkbox"/> Upstream value chain</p> <p><input checked="" type="checkbox"/> Downstream value chain</p>

[Fixed row]

C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities

(2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

0

(2.1.3) To (years)

1

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Vestas has selected time horizons consistent with the ESRS definitions both for impacts and risk and opportunities. The time-horizons are short (< 1 year), medium (1-5 years) and long- term (<5 years). However, when assessing and embedding material risks and opportunities in our annual strategic and enterprise risk management annual wheel, the topics need to be reassessed seen in the perspective of the current Enterprise risk management time-horizons that are short- term (current year), medium- term (1-3 years) and long- term (<3 years). Key DIROs are considered as part of Vestas strategic and financial planning through top management priority.

Medium-term

(2.1.1) From (years)

1

(2.1.3) To (years)

5

(2.1.4) How this time horizon is linked to strategic and/or financial planning

These time horizons are aligned with Vestas enterprise risk management program. We therefore identify, assess and manage environmental DIROs in the same way as all other DIROs are assessed across the company. Through the ERM program, the most material DIROs are highlighted to the Risk Committee and communicated to the Board of Directors. Key DIROs are considered as part of Vestas strategic and financial planning through top management priority.

Long-term

(2.1.1) From (years)

5

(2.1.2) Is your long-term time horizon open ended?

Select from:

Yes

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Vestas has selected time horizons consistent with the ESRS definitions both for impacts and risk and opportunities. The time-horizons are short (< 1 year), medium (1-5 years) and long- term (<5 years). However, when assessing and embedding material risks and opportunities in our annual strategic and enterprise risk management annual wheel, the topics need to be reassessed seen in the perspective of the current Enterprise risk management time-horizons that are short- term (current year), medium- term (1-3 years) and long- term (<3 years). Key DIROs are considered as part of Vestas strategic and financial planning through top management priority.

[Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

	Process in place	Dependencies and/or impacts evaluated in this process
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>	<p>Select from:</p> <p><input checked="" type="checkbox"/> Both dependencies and impacts</p>

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

	Process in place	Risks and/or opportunities evaluated in this process	Is this process informed by the dependencies and/or impacts process?
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>	<p>Select from:</p> <p><input checked="" type="checkbox"/> Both risks and opportunities</p>	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- Direct operations
- Upstream value chain
- Downstream value chain
- End of life management

(2.2.2.4) Coverage

Select from:

- Full

(2.2.2.5) Supplier tiers covered

Select all that apply

- Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

- Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

Short-term
 Medium-term
 Long-term

(2.2.2.10) Integration of risk management process

Select from:

Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

Site-specific
 Local
 Sub-national
 National

(2.2.2.12) Tools and methods used

Enterprise Risk Management

Enterprise Risk Management

International methodologies and standards

Environmental Impact Assessment
 IPCC Climate Change Projections
 ISO 14001 Environmental Management Standard
 Life Cycle Assessment

Other

- Scenario analysis
- Desk-based research
- External consultants
- Materiality assessment
- Internal company methods
- Partner and stakeholder consultation/analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- Drought
- Tornado
- Landslide
- Wildfires
- Heat waves
- Storm (including blizzards, dust, and sandstorms)
- Other acute physical risk, please specify :**Seismic Hazard, Tsunami Hazard, Volcanic Hazard, Wave Hazard, Extra-tropical Cyclone Hazard,**
- Subsidence
- Cold wave/frost
- Cyclones, hurricanes, typhoons
- Heavy precipitation (rain, hail, snow/ice)
- Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

- Heat stress
- Soil erosion
- Water stress
- Sea level rise
- Coastal erosion
- Changing precipitation patterns and types (rain, hail, snow/ice)
- Other chronic physical driver, please specify :**Extreme low temperature, extreme high temperature, cooling degree days, heating degree days**
- Changing wind patterns
- Temperature variability
- Precipitation or hydrological variability
- Increased severity of extreme weather events
- Changing temperature (air, freshwater, marine water)

Policy

- Carbon pricing mechanisms
- Poor coordination between regulatory bodies
- Poor enforcement of environmental regulation
- Lack of mature certification and sustainability standards

- Increased difficulty in obtaining operations permits
- Changes to international law and bilateral agreements

Market

- Availability and/or increased cost of certified sustainable material
- Availability and/or increased cost of raw materials
- Changing customer behavior
- Uncertainty in the market signals

Reputation

- Increased partner and stakeholder concern and partner and stakeholder negative feedback
- Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)
- Stigmatization of sector

Technology

- Transition to lower emissions technology and products
- Unsuccessful investment in new technologies

Liability

- Exposure to litigation
- Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

<input checked="" type="checkbox"/> NGOs	<input checked="" type="checkbox"/> Regulators
<input checked="" type="checkbox"/> Customers	
<input checked="" type="checkbox"/> Employees	
<input checked="" type="checkbox"/> Investors	
<input checked="" type="checkbox"/> Suppliers	

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

- No

(2.2.2.16) Further details of process

Climate Change analysis integrated as part of Vestas' DMA process

Row 2

(2.2.2.1) Environmental issue

Select all that apply

- Biodiversity

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Dependencies
- Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- Direct operations
- Upstream value chain

(2.2.2.4) Coverage

Select from:

Full

(2.2.2.5) Supplier tiers covered

Select all that apply

Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

Short-term

Medium-term

Long-term

(2.2.2.10) Integration of risk management process

Select from:

Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

Site-specific

Local

Sub-national

National

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

Encore tool

LEAP (Locate, Evaluate, Assess and Prepare) approach, TNFD

ReCiPe

TNFD – Taskforce on Nature-related Financial Disclosures

WWF Biodiversity Risk Filter

International methodologies and standards

Environmental Impact Assessment

IPCC Climate Change Projections

ISO 14001 Environmental Management Standard

Life Cycle Assessment

Databases

Other databases, please specify :Global Impact Database (GID)

Other

Scenario analysis

Partner and stakeholder consultation/analysis

Desk-based research

External consultants

Materiality assessment

Internal company methods

(2.2.2.13) Risk types and criteria considered

Acute physical

Drought

Subsidence

- Tornado
- Landslide
- Wildfires
- Heat waves
- Storm (including blizzards, dust, and sandstorms)
- Other acute physical risk, please specify :**Tsunami Hazard, Seismic Hazard, Wave Hazard**

- Cold wave/frost
- Cyclones, hurricanes, typhoons
- Heavy precipitation (rain, hail, snow/ice)
- Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

- Soil erosion
- Water stress
- Sea level rise
- Coastal erosion
- Change in land-use
- Temperature variability
- Precipitation or hydrological variability
- Increased severity of extreme weather events
- Changing temperature (air, freshwater, marine water)
- Changing precipitation patterns and types (rain, hail, snow/ice)

Policy

- Changes to international law and bilateral agreements
- Increased difficulty in obtaining operations permits
- Lack of mature certification and sustainability standards
- Poor enforcement of environmental regulation

Market

- Availability and/or increased cost of certified sustainable material
- Availability and/or increased cost of raw materials
- Changing customer behavior
- Uncertainty in the market signals

Reputation

- Increased partner and stakeholder concern and partner and stakeholder negative feedback
- Negative press coverage related to support of projects or activities with negative impacts on the environment (e.g. GHG emissions, deforestation & conversion, water stress)
- Stigmatization of sector

Technology

- Unsuccessful investment in new technologies

Liability

- Exposure to litigation
- Non-compliance with regulations

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- NGOs
- Customers
- Employees
- Investors
- Suppliers
- Regulators

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

- No

(2.2.2.16) Further details of process

Water and Biodiversity analysis integrated as part of Vestas' DMA process.

[\[Add row\]](#)

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

- Yes

(2.2.7.2) Description of how interconnections are assessed

In Vestas' Double Materiality Assessment approach, dependencies, impacts, risks, and opportunities across all material topics are assessed. Especially for environmental topics, hereunder climate- and nature-related topics, there is a close interconnection. We consider environmental topics (as well as social topics) holistically in our assessment, i.e., look at the topic and the potential DIRO from many angles. To ensure capture of potential interconnections between topics, Subject Matter Experts from various parts of Vestas are highly involved in the DMA. They provide input first and foremost for their own expertise area, but also review and engage in discussion with other SMEs, providing input on other topic areas.

[Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

- No, but we plan to within the next two years

(2.3.7) Primary reason for not identifying priority locations

Select from:

- Not an immediate strategic priority

(2.3.8) Explain why you do not identify priority locations

We have mapped our facilities according to their proximity to biodiversity and water stressed areas. As we have no significant negative impact on either the biodiversity areas or water stressed areas, these are not highlighted in this sections as they are not considered priority locations. We are in the process of revisiting our science based target including our GHG reduction plans and priority mapping.

[Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

- Revenue

(2.4.3) Change to indicator

Select from:

- Absolute decrease

(2.4.5) Absolute increase/ decrease figure

300000000

(2.4.6) Metrics considered in definition

Select all that apply

- Frequency of effect occurring
- Time horizon over which the effect occurs
- Likelihood of effect occurring

(2.4.7) Application of definition

To define financial risks and opportunities, Vestas has an Enterprise Risk Matrix. It defines the levels when risks or opportunities are significant. Depending on the likelihood/frequency of the risk/opportunity, different levels of financial impact will result in the risk/opportunity being material. This process is connected to our DMA process. Quantitative estimation of risks and opportunities is always supported by qualitative analysis. The qualitative analysis is fundamental to understand likelihood/frequency and time horizon of the risk opportunity. This process is also a pivotal part of Vestas DMA process.

Opportunities

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

- Revenue

(2.4.3) Change to indicator

Select from:

- Absolute increase

(2.4.5) Absolute increase/ decrease figure

300000000

(2.4.6) Metrics considered in definition

Select all that apply

- Frequency of effect occurring
- Time horizon over which the effect occurs
- Likelihood of effect occurring

(2.4.7) Application of definition

To define financial risks and opportunities, Vestas has an Enterprise Risk Matrix. It defines the levels when risks or opportunities are significant. Depending on the likelihood/frequency of the risk/opportunity, different levels of financial impact will result in the risk/opportunity being material. Quantitative estimation of risks and opportunities is always supported by qualitative analysis. The qualitative analysis is fundamental to understand likelihood/frequency and time horizon of the risk opportunity. This process is also a pivotal part of Vestas DMA process.

[Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.1.1) Environmental risks identified

Select from:

Yes, both in direct operations and upstream/downstream value chain

Plastics

(3.1.1) Environmental risks identified

Select from:

No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

Environmental risks exist, but none with the potential to have a substantive effect on our organization

(3.1.3) Please explain

*Our products are not highly dependent on plastics, and as such we are not exposed to any environmental risks related to plastics.
[Fixed row]*

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

- Risk3

(3.1.1.3) Risk types and primary environmental risk driver

Technology

- Transition to lower emissions technology and products

(3.1.1.4) Value chain stage where the risk occurs

Select from:

- Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- Denmark

(3.1.1.9) Organization-specific description of risk

This risk is not tied to one specific country or area, it is company-wide. Reducing scope 1 and 2 emissions is a fundamental part of Vestas-strategy, and Vestas has a target of carbon neutrality in own operations in 2030. For Vestas, the transition to lower-emission technologies and processes represents both a risk and an strategic opportunity. It is embedded in our global sustainability strategy, "Sustainability in everything we do", which is built on four pillars: -reducing carbon emissions, -improving material efficiency, -becoming the safest and most inclusive energy company, -and leading the global shift to sustainable energy. To remain competitive and mitigate long-term transition risks, Vestas is investing in the decarbonisation of its own operations and supply chain. In 2024, we allocated EUR 0.5m in CAPEX and EUR 23.2m in OPEX to transition measures, expected to rise to EUR 1.2m and EUR 27.8m respectively in 2025. These investments cover: Renewable heating systems to replace fossil-based energy in our facilities. Electrification of our fleet with EVs, reducing reliance on fossil fuels. Blade recycling infrastructure to increase

circularity and reduce material-related emissions. Supplier engagement on low-emission materials, including steel, which accounts for ~50% of lifecycle turbine emissions. The re-entry into offshore wind has expanded the scope of operations, increasing the complexity and cost of meeting previously set GHG reduction targets.

(3.1.1.11) Primary financial effect of the risk

Select from:

- Increased capital expenditures

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- Medium-term
- Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

- Very likely

(3.1.1.14) Magnitude

Select from:

- Low

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Anticipated effects of the risk on financial position, performance, and cash flows Vestas has visibility in the short term, where transition costs are reflected in our budgets and reporting, while the longer-term outlook is less certain as it depends on technology development, supplier readiness, and evolving regulatory frameworks. In 2024, we allocated EUR 0.5m in CAPEX and EUR 23.2m in OPEX to decarbonisation measures, rising to EUR 1.2m and EUR 27.8m in 2025. These cover renewable heating, EV fleet electrification, and recycling infrastructure, which are primarily Scope 1 and 2 transition levers. For risk calculation, we project forward these cost categories, recognising that similar levels of expenditure will be required until our internal Scope 1 and 2 transition is fully completed. Looking beyond 2026, we anticipate additional transition costs when working with suppliers to decarbonise upstream materials and logistics (Scope 3). These costs are harder

to quantify at present but will become increasingly material as industry standards and carbon regulations tighten. It is important to distinguish between transition risks and opportunities: Risk focus: Transition to low-emission technologies for Scope 1 & 2, where costs are borne directly by Vestas and reduce near-term margins and cash flows. Opportunity focus: Transition to lower-emission products, such as low-emission steel (LES) and recyclable blades, which carry higher costs but are passed through to customers. These are not risks but value-adding opportunities, as we are experiencing strong customer interest and competitive differentiation in tenders where sustainability criteria are decisive. Summary: In the short term, transition costs create modest downward pressure on cash flows. In the medium to long term, costs will focus more into supplier engagement (Scope 3), where visibility is more limited, but are expected to be balanced by growing opportunities in low-emission products and services.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

25000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

30000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

20000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

32000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

18000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

34000000

(3.1.1.25) Explanation of financial effect figure

Explanation of financial effect figures The anticipated financial effects of the risk “Transition to lower-emission technologies and processes” are primarily linked to Vestas’ decarbonisation investments. In the short term (2025–2026), costs are visible and quantifiable. In 2024, Vestas allocated EUR 0.5m in CAPEX and EUR 23.2m in OPEX to support decarbonisation levers, rising to EUR 1.2m in CAPEX and EUR 27.8m in OPEX in 2025. These costs relate to renewable heating systems, electrification of our vehicle fleet, blade recycling infrastructure, and supplier engagement on low-emission materials. We expect these annual expenditure levels (EUR ~25–30m OPEX and ~1m CAPEX) to remain relatively stable until the full transition of Scope 1 and 2 is complete. This creates a manageable financial impact compared to our EUR 17.3bn revenue base, and ensures continued compliance with CSRD, EU Taxonomy, and SBTi. In the medium term, costs remain linked to Scope 1 and 2 activities but increased focus into Scope 3 supplier engagement. Decarbonising upstream materials, especially steel, metals in general, and transport, will add complexity and increase expenditure. We anticipate that Scope 3 transition costs could add 25–50% on top of existing Scope 1 and 2 levels which will decrease in the same proportion. However, these efforts also strengthen Vestas’ competitive advantage, as tenders increasingly value non-price sustainability criteria. In the long term, internal Scope 1 and 2 transition will largely be completed. Transition costs will stabilise, focus will remain on newer tech and stronger supplier-focused Scope 3 decarbonisation. Importantly, low-emission steel and recyclable blades are not treated as risks but as opportunities, as their higher costs can be passed through to customers. Market interest is already strong, and we anticipate positive marginal contributions from these offerings, further strengthening financial resilience. In summary, short-term financial effects are visible and manageable, medium-term effects are more uncertain but aligned with competitiveness, and long-term effects are expected to be balanced or positive due to product opportunities and cost pass-through mechanisms.

(3.1.1.26) Primary response to risk

Compliance, monitoring and targets

Implementation of environmental best practices in direct operations

(3.1.1.27) Cost of response to risk

23000000

(3.1.1.28) Explanation of cost calculation

Cost Calculation The cost calculation is based on actual and budgeted transition expenditures for Scope 1 and 2, projected forward and adjusted for increasing Scope 3 focus. In the short term, costs are visible and quantifiable at EUR ~25–30m annually, based on CAPEX and OPEX allocations for renewable heating, EV fleet electrification, blade recycling and supplier engagement. In the medium term, Scope 1 and 2 costs gradually decline while Scope 3 decarbonisation costs increase, particularly for steel, other metals and transport, giving a range of EUR 20–32m annually. In the long term, internal Scope 1 and 2 transition is largely complete, with costs stabilising around supplier-focused Scope 3 measures and new technologies at EUR 18–34m annually. Low-emission steel and recyclable blades are not treated as risks but as opportunities, as costs are passed through to customers and expected to generate positive marginal contributions.

(3.1.1.29) Description of response

Description of the Response Vestas is actively implementing its transition plan through targeted actions: 100% renewable electricity sourced across own operations since 2020. Electrification of fleet: 92% of benefit cars are EV/PHEV; 25% of service vehicles are renewably fueled. Low-emission steel towers introduced in 2024, with expansion planned in 2025. Industrialised blade recycling: advancing circular solutions for epoxy-infused blades. Development business contributed significantly to earnings and order intake, maturing over 7 GW of pipeline projects. Mitigation Strategy and Organisational Response – 2024 Vestas is responding through: Strategic CAPEX/OPEX allocation to decarbonisation levers. Revalidation of SBTi targets in 2025 to reflect expanded offshore scope. Continued innovation in circularity and low-emission materials. Alignment with EU Taxonomy to ensure regulatory compliance and investor confidence. Focus on progress over perfection, recognising the evolving ESG landscape for EU-based companies.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Policy

Carbon pricing mechanisms

(3.1.1.4) Value chain stage where the risk occurs

Select from:

Upstream value chain

(3.1.1.6) Country/area where the risk occurs

Select all that apply

Denmark

(3.1.1.9) Organization-specific description of risk

Not tied up to one specific country. Risks tied to political developments, such as carbon taxes and tariffs: Vestas might be exposed to increasing carbon taxes globally. The Carbon Boarder Adjustment Mechanism (CBAM) is a tax on the carbon footprint intensity of materials imported into the EU. Increasing carbon taxes may increase production costs of our products. It is important we manage to distribute these potential costs across our value chain, ensuring neither our suppliers nor

ourselves carry the full burden of the increasing costs. Increasing carbon taxes highlight the importance of switching to low emissions materials, a key focus of Vestas.

(3.1.1.11) Primary financial effect of the risk

Select from:

- Increased production costs

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- Medium-term
- Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

- Likely

(3.1.1.14) Magnitude

Select from:

- Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Anticipated effects of the risk on financial position, performance, and cash flows Short term (1–3 years): Carbon pricing schemes and the EU Carbon Border Adjustment Mechanism (CBAM) create near-term margin pressure by raising costs for steel, aluminium and composites. These costs affect cash flows until pass-through mechanisms in contracts take effect. Early partnerships on low-emission steel already reduce part of this exposure. Medium term (3–5 years): With global carbon prices expanding, production costs may rise structurally. If not fully recovered, EBIT margins could face moderate pressure. However, Vestas expects most costs to be mitigated through commercial pass-through clauses and sourcing strategies. Cash flows may be more volatile, but competitiveness is supported by customer demand for low-emission materials. Long term (5–10 years): As low-emission materials become mainstream and pass-through clauses standardised, carbon costs are expected to be almost fully recovered. At this stage, the effect on financial performance and cash flows is neutral to positive, as Vestas captures

demand for low-carbon products while being insulated from input-cost volatility. Summary: Carbon taxes and tariffs create short-term financial pressure but are expected to be largely neutralised in the medium term and potentially positive in the long term, as demand for low-carbon materials strengthens and cost recovery is embedded in contracts.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

14000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

19000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

22000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

29000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

0

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

10000000

(3.1.1.25) Explanation of financial effect figure

Explanation of financial effect figures – Carbon taxes and tariffs Baseline exposure: In 2024, Purchased Goods & Services accounted for 7.99 MtCO₂e (scope 3). Turbines comprise 85–90% metals and 10–15% composites, materials that fall under EU ETS and CBAM pricing. Carbon price assumptions (policy-driven): Short term (2025–2027): €65–€85/t Medium term (2028–2030): €100–€130/t Long term (2030+): €140–€180/t Gross exposure (before mitigation): Short term: 7.99 Mt × €65–85/t = €519–€679m Medium term: 7.99 Mt × €100–130/t = €799–€1,039m Long term: 7.99 Mt × €140–180/t = €1,119–€1,438m Mitigation assumptions: Footprint reduction: 45% reduction in material emissions through low-emission steel, circularity, and sourcing optimisations by 2030. Pass-through to customers: Short term: ~95% recovered (5% retained cost, linked to CBAM start-up) Medium term: ~95% recovered (5% retained cost, reflecting market volatility) Long term: ~100% recovered (full cost pass-through embedded in contracts). Net retained cost (after mitigation): Short term: €519–€679m × 5% = €14.3–€18.7m Medium term: €799–€1,039m × 5% = €22.0–€28.6m Long term: €1,119–€1,438m × 0% = €0m Interpretation: Short term: Modest retained costs reflect CBAM start-up and contract adjustments. Medium term: Slightly higher retained costs due to wider CBAM coverage and global carbon price expansion, but still manageable. Long term: Residual risk eliminated through near-full cost recovery and market acceptance of low-carbon products. Conclusion: While gross exposure runs into the hundreds of millions annually, net financial effect for Vestas is narrowed to <€30m per year in the short/medium term and eliminated in the long term. This reflects our strategy to: Accelerate low-emission material sourcing. Optimise sourcing locations to minimise CBAM exposure. Embed carbon cost recovery mechanisms into commercial contracts.

(3.1.1.26) Primary response to risk

Engagement

- Engage in multi-stakeholder initiatives

(3.1.1.27) Cost of response to risk

10000000

(3.1.1.28) Explanation of cost calculation

Cost of response to carbon tax & tariff risk Advocacy & political influence: Vestas disclosed ~EUR 5m in 2024 for political influence activities (e.g. WindEurope, WindDenmark). A share of this can be directly tied to shaping CBAM/carbon pricing frameworks. Systems investments: Makersite for LCA and Sphera for HSE represent low-single-digit millions per year in licensing, integration, and staff training. Supplier engagement costs: Early-stage work with ArcelorMittal, SSAB and others involves dedicated sourcing staff and contractual negotiation. Direct costs are again in the low-single-digit millions per year, beyond the pass-through premiums (treated as product cost, not risk cost). Internal resources & compliance: Dedicated ESG finance, sustainability, and policy teams = a few million annually in salary and overhead. Overall cost of response = ~EUR 10–15m annually (low relative to EUR 17.3bn revenues).

(3.1.1.29) Description of response

Updated Risk Response: Carbon Taxes, CBAM, and Tariffs To manage the increasing risk of carbon taxes, CBAM, and tariffs, Vestas continues to actively reduce CO₂ emissions across Scope 1, 2, and 3 in alignment with our sustainability strategy, Sustainability in Everything We Do. These efforts are essential to mitigate financial exposure and ensure resilience against evolving regulatory frameworks such as the EU Carbon Border Adjustment Mechanism (CBAM). In 2024, we made

significant progress in reducing our carbon footprint, particularly in Scope 3, which accounts for 98.8% of our total emissions. Our largest footprint stems from the use of steel and iron, which represent 50% of Scope 3 emissions. To address this, we introduced low-emission steel towers into our product portfolio, marking a leap forward in decarbonising our supply chain. Key initiatives include: Partnership with ArcelorMittal to produce low-emission steel using scrap melted in wind-powered electric arc furnaces, reducing emissions by up to 66%. Deployment of low-emission steel in projects such as Baltic Power and Nordlicht 1 & 2, achieving up to 16% footprint reduction per tower. Development of a sustainability data platform using digital twin technology to calculate real-time climate footprints and support supplier engagement. To support these actions, Vestas allocated EUR 0.5m in CAPEX and EUR 23.2m in OPEX in 2024, aligned with the EU Taxonomy and Commission Delegated Regulation 2021/2178. In addition, our global manufacturing footprint and strategic sourcing diversification help mitigate tariff risks, particularly in markets such as the USA and other regions with protectionist trade policies. By localising production and building regional supply chains, Vestas reduces exposure to import duties and trade barriers, while strengthening resilience and competitiveness in key markets.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Policy

Increased difficulty in obtaining operations permits

(3.1.1.4) Value chain stage where the risk occurs

Select from:

Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

Denmark

(3.1.1.9) Organization-specific description of risk

Political risk. Not tied to a specific country. 2025: Permitting delays represent a material risk to Vestas' business model. In Denmark, the failure of the 2024 offshore wind tender—where no bids were received due to lack of subsidies and rigid auction design—highlighted the fragility of the permitting environment. WindDenmark and Green Power Denmark have raised concerns about insufficient port capacity, unclear project timelines, and lack of transparency, all of which hinder investment decisions and infrastructure readiness. Although improved permitting design is starting to emerge in different countries, including in the UK, it remains a global obstacle for the Wind industry. <https://www.instituteforenergyresearch.org/international-issues/denmark-gets-no-bids-in-its-offshore-wind-tender-as-it-offered-no-subsidies/> <https://cipfonden.dk/en/2024/08/16/new-report-insufficient-port-capacity-blocks-denmarks-climate-targets/> Vestas Policy Recommendation: <https://www.vestas.com/en/about/Our-policy-recommendations/permitting> "Today, 100s of gigawatts of renewable capacity are caught in complex and lengthy permitting procedures... The authorities that drive them are missing the political will and mandate...It takes up to a decade of documentation to achieve approvals to build renewable energy projects. In the EU alone, there is four times more wind energy trapped in permitting than there is under construction."

(3.1.1.11) Primary financial effect of the risk

Select from:

- Decreased revenues due to reduced demand for products and services

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- Medium-term
- Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

- Very likely

(3.1.1.14) Magnitude

Select from:

- High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

2024: Slow permitting processes will halt the built-out of renewables, and thereby reduce projects and as such demand for Vestas' products and services. 2025: Anticipated Effects on Financial Position, Performance, and Cash Flows 1. Financial Position and Performance: Permitting delays can lead to postponed or cancelled projects, reducing order intake and revenue visibility. Vestas' backlog and pipeline depend on timely project execution; delays may compress margins due to inflation, idle capacity, and contractual penalties. The lack of permitting progress in key markets like Denmark could also shift demand to more predictable regions, impacting regional profitability and strategic resource allocation. 2. Cash Flows: Delayed permitting affects cash conversion cycles by pushing revenue recognition further out. For projects under long-term service agreements (LTSA), delays in turbine commissioning postpone the start of recurring cash flows. This can strain working capital and reduce free cash flow in the short term, especially if CAPEX and OPEX have already been committed to project preparation. 1-Permitting remains the biggest bottleneck for deploying wind at scale. Approximately 80 GW of wind power capacity is currently stuck in permitting procedures across Europe, of which at least 59 GW are onshore. It takes up to nine years in some countries to hand out a permit for a single project. This is incompatible with European Climate & Energy ambitions – <https://windeurope.org/news/revised-eu-renewables-directive-set-to-speed-up-wind-permitting/> Germany surges – the rest of Europe stagnates Germany is building the most new wind. They're set to build 5 GW of onshore wind this year, nearly 3 times more than they've been building over the last 5 years. It's in large part because Germany was the first country to rigorously implement the excellent new EU permitting rules. As a result, they permitted a record 15 GW of new onshore wind farms in 2024 and are on track to beat that in 2025... <https://windeurope.org/news/european-governments-must-get-their-act-together-on-wind-energy/>

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

1000000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

200000000

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

3000000000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

500000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

500000000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

700000000

(3.1.1.25) Explanation of financial effect figure

Anticipated effect of permitting delays as diminished demand Short term: The effect is limited but visible. Delays in permitting can cause slippage in project execution, leading to lower annual revenues than planned. Relative to Vestas' EUR 17.3bn baseline, this could mean a EUR 1–2bn reduction per year, as some projects are postponed rather than cancelled. Medium term: The risk of diminished demand grows. If permitting timelines remain close to 9 years, the industry cannot deliver the installation growth needed to meet IEA/EU targets. This could reduce annual revenue potential by EUR 3–5bn, as Vestas faces underutilised manufacturing and service capacity. Long term: Persistent permitting barriers could structurally reduce demand for turbines. Instead of the projected doubling of wind capacity by 2030, realised volumes could be significantly lower. For Vestas, this could translate into EUR 5–7bn lower annual revenues versus the growth trajectory assumed in our Global Strategic Priorities 2026–2030. Summary: Slow permitting not only back-loads Vestas' EUR 68.4bn combined backlog, it also risks diminishing demand by constraining industry growth. Over time, this would shift the financial effect from a timing issue (short term) to a structural revenue loss (medium and long term).

(3.1.1.26) Primary response to risk

Engagement

Engage with regulators/policy makers

(3.1.1.27) Cost of response to risk

4600000

(3.1.1.28) Explanation of cost calculation

Cost Calculation – Permitting The cost of permitting delays is best expressed as the organisational expenditure Vestas incurs to mitigate this risk, rather than as theoretical lost revenues. In 2024, Vestas reported ~EUR 4.6m related to political influence and advocacy activities, which includes engagement through WindEurope, WindDenmark, and other industry bodies to accelerate and standardise permitting. Additional costs arise from early engagement with regulators and communities, conducting EIAs and social due diligence, diversifying development activities into markets with clearer frameworks, and resourcing policy teams. These expenditures are recurring OPEX, modest relative to Vestas' EUR 17.3bn revenue base, but represent the direct financial cost of responding to the permitting challenge.

(3.1.1.29) Description of response

Mitigation Strategy and Organizational Response Vestas is actively responding through: • Early engagement with regulators and communities, including social due diligence and environmental impact assessments (EIA) aligned with EU directives. Vestas Annual Report 2024 • Diversifying its development footprint, with increased focus on markets with clearer permitting frameworks and subsidy support. • Leveraging LTSA contracts to stabilise long-term cash flows and reduce exposure to permitting • Advocating through industry bodies like WindEurope and WindDenmark for faster, more transparent permitting aligned with the Net Zero Industry Act. Why Service Agreements Mitigate Risk—and Why It Matters The 25-year LTSA in Finland is more than a revenue tool; it's a strategic risk-mitigation strategy. Vestas assumes responsibility for turbine performance, ensuring that energy output meets contractual guarantees. For instance, if the turbines underperform, Vestas compensates the developer—a critical safeguard in a market where wind farm returns depend on consistent energy yields. This model also insulates Vestas from cyclical turbine demand. Even in periods of slower hardware sales (e.g., during supply chain disruptions or permitting delays), service revenue remains stable. Historical data shows that Vestas' service revenue grew at a 10% CAGR between 2019–2023, outpacing turbine sales growth. <https://www.ainvest.com/news/vestas-service-driven-strategy-recurring-revenue-powering-europe-wind-boom-2507/>
[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

Liabilities

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

440000000

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

22000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

Less than 1%

(3.1.2.7) Explanation of financial figures

*Climate Pathways and Scenarios: The analyses incorporate various climate scenarios to project potential future developments: • Physical Climate Scenarios: Utilizing Representative Concentration Pathways (RCPs), such as RCP 2.6, RCP 4.5, and RCP 8.5, to assess impacts of different greenhouse gas concentration trajectories. • Transition Scenarios: Employing scenarios like the International Energy Agency's (IEA) Stated Policies Scenario (STEPS) and Net Zero Emissions by 2050 (NZE 2050) to evaluate policy and market transitions. • Time Horizons: The analyses consider multiple timeframes—2030, 2050, and 2070—to understand short-, medium-, and long-term risks and opportunities. Such extreme weather events can lead to production delays due to accessibility issues or damage to inventory, particularly when materials are stored outdoors or when flooding affects factory interiors. As of February 25, the finished goods inventory values at these facilities are as follows: Million EU • Ringkøbing: 167 • Tianjin (Generator and Assembly): 96 • Chennai: 25 • Brighton: 79 • Fortaleza: 48 • Windsor: 25 We focus on inventory, as it is particularly susceptible to damage during extreme weather events, which can significantly disrupt commercial operations. While insurance policies cover physical damages to facilities and equipment, they may not fully address losses related to inventory spoilage or the broader financial impacts of operational delays. The combined inventory value at risk totals 440 million EUR. Assuming a 5% * damage or destruction rate due to extreme weather events, potential losses could amount to 22 million EUR. While such incidents have been rare historically, the increasing frequency and severity of extreme weather events due to climate change elevate this risk over time. * While comprehensive insurance policies typically cover physical damages to facilities and equipment caused by extreme weather events, they may not fully address the indirect financial repercussions, such as production delays and replacement costs. Therefore, incorporating a 5% impact assumption is a prudent approach to account for these potential disruptions. Rationale for the 5% Impact Assumption: Production Delays: Extreme weather events can significantly disrupt operations, leading to delays in manufacturing processes. For instance, severe weather has been reported to delay 45% of construction projects globally, resulting in substantial financial losses.*

Climate change

(3.1.2.1) Financial metric

Select from:

OPEX

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

25000000

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

- Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

1000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

- Less than 1%

(3.1.2.7) Explanation of financial figures

Anticipated effects of physical climate risk on OPEX The impact of physical climate risks on Vestas' operating expenditure is assessed as low, under 1% of annual OPEX. Our global manufacturing and service footprint is geographically diversified, reducing exposure to single-point disruptions from extreme weather or climate-related events. Localised impacts, such as temporary site shutdowns or higher logistics costs, are mitigated through contingency planning, insurance, and supplier diversification. Consequently, while minor fluctuations in OPEX may occur in specific geographies, the overall effect on Vestas' financial performance and cash flows remains immaterial relative to our operating cost base.

Climate change

(3.1.2.1) Financial metric

Select from:

- Revenue

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

1000000

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

- Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

1000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

- Less than 1%

(3.1.2.7) Explanation of financial figures

Vestas assesses physical risks such as extreme weather, flooding, and heat stress across its global manufacturing, installation, and service footprint. Given our diversified geographic presence and supply chain, the financial exposure from acute or chronic physical climate events is assessed as low, under 1% of annual revenues. Disruption risks are spread across multiple regions, reducing the likelihood of systemic financial impact. Moreover, long-term service contracts and contingency planning provide revenue stability even in case of localised events. Consequently, while site-level interruptions can occur, the overall effect on Vestas' financial position, performance, and cash flows is expected to remain immaterial relative to our EUR 17.3bn revenue base.

[Add row]

(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Select from:

- No, but we anticipate being regulated in the next three years

(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?

Vestas has an approved science-based target to reduce absolute scope 1 and 2 GHG emissions with 100% by 2030 from a 2019 base year. In 2022, a location in Denmark switched from oil heating to heat pumps using renewable electricity. By 2030, we are planning to transition all heating with natural gas to renewable energy. In 2023, we partnered with Volkswagen and Ford to introduce sustainably fuelled vehicles to our service fleet, powered by electricity or biofuel. In 2024, 92 percent of our company cars, either in-use or on order, were electric or hybrid vehicles. By 2025, we will phase out fossil fuel-powered company cars, five years ahead of our

carbon neutrality target by 2030. Until we reach full carbon neutrality and therefore won't be impacted by carbon taxes, we will ensure to pay any taxes we are regulated by. Compliance is ensured in collaboration between the tax department, sustainability and any other departments where the tax responsibility might fall under. Strategy for compliance with regulatory systems Vestas' compliance strategy is built around our global sustainability roadmap, "Sustainability in everything we do", structured on four pillars: Reduce carbon emissions – decarbonising operations and supply chain through low-emission steel, recyclable blades, EV fleet transition, and sustainable heating. Improve material efficiency – expanding circularity initiatives, including blade recycling and improved waste efficiency. Be the safest, most inclusive and most responsible company – strengthening safety performance, embedding inclusion, and ensuring our workforce reflects our values. Lead the transition to a world powered by sustainable energy – maintaining global leadership in onshore, offshore, service, and development. To ensure regulatory compliance: CSRD / ESRS: As a first-wave company, we delivered our first CSRD-compliant Sustainability Statement in 2024, and are working with auditors to continuously improve quality, traceability, and assurance. EU Taxonomy: In 2024, 99% of revenues, 92% of CAPEX, and 99% of OPEX were Taxonomy-eligible and aligned, showing that our business is inherently sustainable. SBTi: We have resubmitted our decarbonisation targets to the Science Based Targets initiative (SBTi) to validate Paris-aligned ambition. Systems & methodologies: Investments in Sphera (HSE data) and Makersite (LCA), plus a transition to a spend-based Scope 3 method where supplier data is not available, strengthen compliance and audit readiness. CBAM & carbon pricing: We anticipate CBAM effects and mitigate risk through strategic partnerships on low-emission materials. By embedding compliance into our four-pillar sustainability strategy and continuously investing in systems, partnerships, and assurance processes, Vestas ensures its reporting is robust, future-proof, and aligned with regulatory expectations — while advancing our ambition to be the global leader in sustainable energy solutions.

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental opportunities identified
Climate change	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes, we have identified opportunities, and some/all are being realized</p>

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

- Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

- Increased sales of existing products and services

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

- Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- Denmark

(3.6.1.8) Organization specific description

This affects all countries: Wind market doubling: According to the IEA Renewables 2024 report, onshore wind additions are expected to almost double by 2030 compared to 2017-2023, while offshore wind capacity is forecast to nearly quadruple. This supports our assumption that wind market growth will be strong and provides evidence for our growth-aligned revenue projections. <https://www.iea.org/energy-system/renewables/wind> The projected growth of the wind sector is a significant material opportunity for Vestas. The renewable energy sector has experienced fluctuating dynamics influenced by various geopolitical and economic factors. There are certain risk and uncertainties, such as the United States' current hardening of policies regarding sustainable energy, and concerns about the European Union's competitiveness, and limitations within the value chain and grid infrastructure. However, these same challenges have simultaneously prompted the European Union to pursue decentralized energy systems to bolster energy security and reduce reliance on external energy sources, such as Russian gas, and overall, beyond this, the growth of renewables remains unchanged. (...) Solar and wind make up almost all this growth. By the end of this decade, wind is expected to become the second largest source of global renewable electricity generation behind solar PV, surpassing generation from hydropower.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

- Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- Medium-term
- Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

- Very likely (90–100%)

(3.6.1.12) Magnitude

Select from:

- High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The opportunity will have a direct positive effect on revenue. The financial opportunity from wind energy's expected doubling by 2030 is fully aligned with Vestas' business model

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

- Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

2500000000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

9700000000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

5400000000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

24900000000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

8700000000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

48700000000

(3.6.1.23) Explanation of financial effect figures

Calculation Explanation – Revenue Opportunity from Wind Energy Growth The financial opportunity from wind energy's expected doubling by 2030 is fully aligned with Vestas' business model, with 100% of the impact reflected in revenues across Onshore, Offshore, Service, and Development. Calculations are based on the IEA's projected renewable growth (2023–2030) and Vestas' disclosed business area market outlook. CAGR means Compound Annual Growth Rate. Approach: Baseline: 2024 revenue of EUR 17.3bn (Vestas Annual Report 2024). Growth assumptions: Onshore CAGR 7–9%, Offshore CAGR 20–25%, Service CAGR 8–10% to 2030. Horizon analysis: Projections made for short term (2026), medium term (2028), and long term (2030). Revenue linkage: Projections represent top-line opportunity directly linked to capacity additions, service contracts, and market expansion. Results: Short term (2026): EUR 19.8–27.0bn revenues (+2.5–9.7bn uplift). Driven primarily by steady Onshore growth (7–9%) and resilient Service contracts (8–10%). Medium term (2028): EUR 22.7–42.2bn revenues (+5.4–24.9bn uplift). Offshore becomes a major driver, with capacity additions scaling rapidly at 20–25% CAGR. Long term (2030): EUR 26.0–66.0bn revenues (+8.7–48.7bn uplift). All business areas benefit: Onshore installations nearly double, Offshore capacity almost quadruples, and Service expands 8–10% annually. Business Area Outlook: Onshore: Market leader with >40 years' experience and 189 GW installed capacity. Onshore growth of 7–9% annually toward 2030 ensures continued revenue expansion. Service: Global market leader, servicing 155 GW across 67 countries. Expected to grow 8–10% annually, providing recurring, resilient revenue streams. Offshore: Largest upside, with 20–25% CAGR to 2030, supported by global build-out and V236-15.0 MWTM turbine deployment. Development: Positioned to capture project pipeline opportunities aligned with the renewable transition. Conclusion: Vestas' revenue opportunity directly mirrors the wind industry's expansion trajectory. With growth across all four business areas and supported by a strong backlog, Revenue Opportunity from Wind Market Growth Short term: EUR 19.8–27.0bn revenues (+2.5–9.7bn uplift) Medium term: EUR 22.7–42.2bn revenues (+5.4–24.9bn uplift) Long term: EUR 26.0–66.0bn revenues (+8.7–48.7bn uplift) AGR assumptions (Onshore 7–9%, Offshore 20–25%, Service 8–10%) to Vestas' 2024 baseline of EUR 17.3bn revenue, and the IEA's projection

(3.6.1.24) Cost to realize opportunity

(3.6.1.25) Explanation of cost calculation

Cost of Opportunity and Explanation The expected doubling of wind energy by 2030 represents a growth opportunity that is fully revenue-aligned for Vestas. In 2024, 99% of revenues were EU Taxonomy-eligible and aligned, while CAPEX alignment stood at 92% and OPEX alignment at 99%. This underlines that Vestas' business model is inherently positioned within the sustainable energy transition. Because our Onshore, Offshore, Service, and Development activities are all directly linked to renewable energy deployment, the "cost of capturing this opportunity" is effectively zero in incremental terms. The investments required — such as scaling manufacturing, industrialising Offshore, strengthening supply chain resilience, and expanding Service — are part of normal business operations and strategic priorities. They are the cost of doing business in our sector and are already embedded in our capital allocation. Operationally, Vestas is on the positive side of this opportunity. Our record-high combined backlog provides visibility of future revenues, and our strong market leadership in Onshore and Service, combined with growing traction in Offshore, positions us to benefit directly from industry growth. As the global leader in sustainable energy solutions, we are deeply anchored in our markets and well positioned to capture incremental demand without incurring additional opportunity-specific costs. In summary: the cost of this opportunity is nil in incremental terms, as it is already integrated into Vestas' operating model. The financial impact is overwhelmingly positive, reinforcing Vestas' role as the global leader in the wind industry and the energy transition

(3.6.1.26) Strategy to realize opportunity

This opportunity is fully aligned with Vestas' business model, with 100% of the financial impact reflected in revenues. Vestas is the global market leader in Onshore wind, with over 40 years of experience and 189 GW installed capacity, offering full solutions from siting to commissioning. In Service, Vestas leads globally with ~16,000 employees across 67 countries, servicing 155 GW of customer assets under long-term subscription contracts. Together with Offshore and Development, these areas are expected to benefit from the transition to renewables, with Onshore installations growing 7–9% annually, offshore 20–25%, and Service 8–10% towards 2030. Supported by a strong backlog, Vestas is well positioned to capture this opportunity and deliver.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

- Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Markets

- Increased demand for certified and sustainable materials

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

- Upstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- Denmark

(3.6.1.8) Organization specific description

This affects all countries- Low Emission Steel: Low-emission steel towers In 2024, we introduced low-emission steel towers as a new product offering to our customers as part of our value proposition and we will continue to expand our range and offerings in 2025 and beyond. By commercializing low-emission steel and low-carbon energy sources, Vestas strengthens its value proposition, enhances competitiveness in tenders with sustainability criteria, and secures premium revenue streams. This directly supports revenue growth, margin expansion, and cash flow resilience.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

- Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

- Short-term
- Medium-term
- Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

- Likely (66–100%)

(3.6.1.12) Magnitude

Select from:

High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Anticipated effects on financial position, performance, and cash flow At the beginning of 2025, Vestas was again ranked “the most sustainable energy solutions company in the world” by Corporate Knights. A cornerstone of this leadership is the introduction of low-emission steel towers and broader low-carbon material and energy solutions. Steel and iron components account for ~50% of Vestas’ Scope 3 emissions and up to 90% of turbine material mass. By commercializing low-emission steel and low-carbon energy sources, Vestas strengthens its value proposition, enhances competitiveness in tenders with sustainability criteria, and secures premium revenue streams. This directly supports revenue growth, margin expansion, and cash flow resilience.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.17) Anticipated financial effect figure in the short-term - minimum (currency)

4000000

(3.6.1.18) Anticipated financial effect figure in the short-term – maximum (currency)

11000000

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

11000000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

25000000

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

100000000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

233000000

(3.6.1.23) Explanation of financial effect figures

Explanation of financial effect figures Closed projects and conditional orders already provide visibility into the financial opportunity from low-emission steel (LES). Because realised premiums vary by project design and customer agreements, Vestas uses ranges to reflect conservative and optimistic scenarios. We cannot disclose more detailed explanation of financial effects as it is strategic confidential information.

(3.6.1.24) Cost to realize opportunity

0

(3.6.1.25) Explanation of cost calculation

The cost is the premium of doing business with sustainable materials, calculated as the difference between conventional and low-emission steel procurement. Importantly, these premiums are covered by customers when linked to sustainability criteria in tenders. In effect, Vestas incurs no structural additional cost; instead, the company realises incremental revenue. With 99% of revenues Taxonomy-aligned and ~92% of CAPEX, these costs are embedded in Vestas' normal operations and capital allocation, making the opportunity operationally positive.

(3.6.1.26) Strategy to realize opportunity

Strategy to realise the opportunity Vestas has partnered with ArcelorMittal to produce low-emission steel using scrap melted in electric arc furnaces powered entirely by wind energy, reducing emissions by up to 66% compared with conventional steel. This is being expanded into Vestas' sustainable product portfolio from 2024 onwards. The first projects demonstrate commercial traction, and the portfolio of low-emission offerings is expected to grow steadily toward 2030. Vestas' strategy focuses on: Scaling customer adoption of low-emission steel towers in onshore and offshore projects. Integrating low-carbon energy sources in operations and supply chains to reduce lifecycle emissions. Expanding low-emission material portfolio beyond steel into transport and other components. Leveraging EU regulatory drivers (e.g. CBAM) to strengthen demand for low-emission inputs. By 2030, the proportion of low-emission and near-zero-emission steel in procurement will increase substantially, enabling both financial gains and Scope 3 emissions reductions, supporting Vestas' vision to remain the global leader in sustainable energy solutions.
[Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

17295000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

100%

(3.6.2.4) Explanation of financial figures

Vestas' Strategic Alignment In the Vestas Investor Presentation for FY 2024, the slide titled "The World Faces an Immense Challenge to Reduce Emissions" underscores the urgent global imperative to significantly reduce carbon emissions, highlighting the pivotal role of renewable energy, particularly wind power, in achieving these reductions. Vestas' strategic initiatives are aligned with market growth projections from the International Energy Agency (IEA), focusing on enhancing manufacturing capabilities to meet the escalating demand for renewable energy solutions. This opportunity is fully aligned with Vestas' business model, with 100% of the financial impact reflected in revenues. Vestas is the global market leader in Onshore wind, with over 40 years of experience and 189 GW installed capacity, offering full solutions from siting to commissioning. In Service, Vestas leads globally with ~16,000 employees across 67 countries, servicing 155 GW of customer assets under long-term subscription contracts. Together with Offshore and Development, these areas are expected to benefit from the transition to renewables, with Onshore installations growing 7–9% annually, Offshore 20–25%, and Service 8–10% towards 2030. Supported by a strong backlog, Vestas is well positioned to capture this opportunity and deliver on its vi The slide titled "Tremendous Growth Potential for Wind" emphasizes the substantial expansion opportunities within the wind energy market. It acknowledges that, despite current challenges such as geopolitical uncertainties and supply chain disruptions, the long-term outlook for wind energy remains robust. This positive trajectory aligns with Vestas' business growth strategies, reinforcing the company's commitment to leading the renewable energy transition. The "Global Strategic Priorities" slide outlines Vestas' key focus areas aimed at reinforcing its leadership in the wind energy sector. These priorities include achieving market leadership by strengthening Vestas' position in onshore wind and becoming a market leader in offshore wind. The strategy delineates a sustainable growth plan for 2026–2030, emphasizing the company's dedication to driving growth, delivering value to stakeholders, and contributing meaningfully to the global shift towards sustainable energy solutions. "Vestas reported a 12% year-over-year revenue increase in 2024, reaching EUR 17.3 billion, reflecting its strong market presence and alignment with industry growth trends

[Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

- Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

- More frequently than quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

- Non-executive directors or equivalent
- Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

- Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Vestas' Diversity, Equity, Inclusion & Belonging Policy contains commitments to principles of diversity and inclusion of all kinds and at all levels of the organisation. Specifically, the policy states a commitment to equal gender representation on the board of directors. In line with Danish regulation, Vestas set a target in 2017 for equal gender representation on the board of directors. In 2022, Vestas reached this goal and is committed to maintaining equal gender representation. In 2024, the Board consisted of 6 women and 4 men.

[Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

Board-level oversight of this environmental issue	
Climate change	<i>Select from:</i> <input checked="" type="checkbox"/> Yes
Biodiversity	<i>Select from:</i> <input checked="" type="checkbox"/> Yes

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

Board chair

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

Other policy applicable to the board, please specify :Rules and procedure for Board of Directors, and Audit Committee Charter

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

- Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- Reviewing and guiding annual budgets
- Overseeing and guiding scenario analysis
- Overseeing the setting of corporate targets
- Monitoring progress towards corporate targets
- Overseeing and guiding value chain engagement
- Monitoring the implementation of a climate transition plan
- Overseeing and guiding the development of a business strategy
- Overseeing and guiding acquisitions, mergers, and divestitures
- Monitoring supplier compliance with organizational requirements
- Overseeing and guiding the development of a climate transition plan
- Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities
- Overseeing and guiding public policy engagement
- Reviewing and guiding innovation/R&D priorities
- Overseeing and guiding major capital expenditures
- Monitoring the implementation of the business strategy
- Overseeing reporting, audit, and verification processes

(4.1.2.7) Please explain

The board is responsible for ensuring that relevant sustainability and esg matters are incorporated into purpose, governance, strategy, decision making, risk management, and accountability reporting. Sustainability and esg priorities are as such incorporated into the governance mechanisms mentioned.

Biodiversity

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- Board chair

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

Other policy applicable to the board, please specify :Rules and procedure for Board of Directors, and Audit Committee Charter

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

Scheduled agenda item in some board meetings – at least annually

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

Reviewing and guiding annual budgets
 Overseeing and guiding scenario analysis
 Overseeing and guiding public policy engagement
 Reviewing and guiding innovation/R&D priorities
 Overseeing reporting, audit, and verification processes
 Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

The board is responsible for ensuring that relevant sustainability and esg matters are incorporated into purpose, governance, strategy, decision making, risk management, and accountability reporting. Sustainability and esg priorities are as such incorporated into the governance mechanisms mentioned.
[Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- Consulting regularly with an internal, permanent, subject-expert working group
- Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- Executive-level experience in a role focused on environmental issues

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: <input checked="" type="checkbox"/> Yes
Biodiversity	Select from: <input checked="" type="checkbox"/> Yes

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

- Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- Assessing environmental dependencies, impacts, risks, and opportunities
- Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- Managing public policy engagement related to environmental issues
- Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- Measuring progress towards environmental corporate targets
- Measuring progress towards environmental science-based targets
- Setting corporate environmental policies and/or commitments
- Setting corporate environmental targets

Strategy and financial planning

- Developing a climate transition plan
- Implementing a climate transition plan
- issues
- Managing environmental reporting, audit, and verification processes
- Managing acquisitions, mergers, and divestitures related to environmental

- Conducting environmental scenario analysis
- Managing major capital and/or operational expenditures relating to environmental issues
- Managing annual budgets related to environmental issues
- Implementing the business strategy related to environmental issues

(4.3.1.4) Reporting line

Select from:

- Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

- More frequently than quarterly

(4.3.1.6) Please explain

The Group President and CEO of Vestas has created a sustainability strategy department to take action on driving sustainability at Vestas. The VP, Head of Sustainability is reporting directly to the Group President and CEO on a monthly basis. The Group President and CEO assesses and follows the sustainability and climate related activities closely and decides on implementation projects e.g. linked to scope 1 and 2 reductions and which initiatives will need a decision at level of board of directors. The sustainability department works in close collaboration with key functional areas, and the department also drives and supports the execution of the strategy, incl. all environmental responsibilities highlighted.

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

- Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- Assessing environmental dependencies, impacts, risks, and opportunities
- Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- Managing supplier compliance with environmental requirements
- Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- Monitoring compliance with corporate environmental policies and/or commitments
- Measuring progress towards environmental corporate targets
- Setting corporate environmental policies and/or commitments
- Setting corporate environmental targets

Strategy and financial planning

- Implementing a climate transition plan
- Implementing the business strategy related to environmental issues
- Managing annual budgets related to environmental issues
- Managing major capital and/or operational expenditures relating to environmental issues
- Managing priorities related to innovation/low-environmental impact products or services (including R&D)

(4.3.1.4) Reporting line

Select from:

- Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

- Quarterly

(4.3.1.6) Please explain

Sustainability Committee: Oversees strategic sustainability targets, activities and supporting the implementation across the organisation and acting as coordinator and facilitator for sustainability activities that have potential impact beyond individual functions. They report to the Executive Management team, to the Audit Committee, and to the Board of Directors at least once a year.

[Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

Climate change

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

10

(4.5.3) Please explain

For the Executive Management Team, 10 percent of the short-term incentive scheme is linked to climate-related KPIs in the form of the KPI "GHG emissions avoided".

[Fixed row]

(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

Corporate executive team

(4.5.1.2) Incentives

Select all that apply

Bonus - % of salary

(4.5.1.3) Performance metrics

Targets

Other targets-related metrics, please specify :Expected CO2 avoided over the lifetime of the capacity produced and shipped during the year.

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

Short-Term Incentive Plan, or equivalent, only (e.g. contractual annual bonus)

(4.5.1.5) Further details of incentives

The Vestas bonus program is linked to: EBIT margin and Avoided Emissions.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance on the key KPIs is to a high degree linked to dealing with and solving climate change issues through sales and service of our wind turbines onshore and offshore.

[Add row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?

	Does your organization have any environmental policies?
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>

[Fixed row]

(4.6.1) Provide details of your environmental policies.

Row 1

(4.6.1.1) Environmental issues covered

Select all that apply

- Climate change

(4.6.1.2) Level of coverage

Select from:

- Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- Direct operations

(4.6.1.4) Explain the coverage

Our Health, Safety and Environment framework, which is an extension of our SQHE Policy, is available on our website (just as the policy is): <https://www.vestas.com/en/sustainability/policies> We deliver sustainable energy solutions and services with high reliability and quality, and we are committed to reducing environmental impacts throughout their lifecycle. The SQHE policy and HSE framework is also built upon our Supplier and Employee codes of conduct. The

policies together cover our entire value chain. Social commitments aren't included in our SQHE policy, but in our Human rights policy, which is available on our website: <https://www.vestas.com/en/sustainability/policies>

(4.6.1.5) Environmental policy content

Environmental commitments

- Commitment to a circular economy strategy
- Commitment to comply with regulations and mandatory standards
- Commitment to implementation of nature-based solutions that support landscape restoration and long-term protection of natural ecosystems
- Commitment to stakeholder engagement and capacity building on environmental issues
- Other environmental commitment, please specify :Commitment to protect and restore biodiversity and ecosystems and to conduct biodiversity impact assessments using the LEAP approach.

Climate-specific commitments

- Commitment to 100% renewable energy
- Commitment to not invest in fossil-fuel expansion
- Commitment to not funding climate-denial or lobbying against climate regulations
- Other climate-related commitment, please specify :Commitment to manage material impacts, risks and opportunities related to climate change mitigation, adaptation, energy efficiency and renewable energy deployment.

Social commitments

- Other social commitment, please specify :The above are covered in our code of conduct.

Additional references/Descriptions

- Description of renewable electricity procurement practices

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- Yes, in line with the Paris Agreement

(4.6.1.7) Public availability

Select from:

- Publicly available

(4.6.1.8) Attach the policy

Vestas-SQHE Policy_April 2024.pdf

Row 3

(4.6.1.1) Environmental issues covered

Select all that apply

- Biodiversity

(4.6.1.2) Level of coverage

Select from:

- Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- Direct operations

(4.6.1.4) Explain the coverage

Attached is our Health, Safety and Environment framework, which is an extension of our SQHE Policy that is available on our website (just as our HSE Framework is): https://www.vestas.com/content/dam/vestas-com/global/en/sustainability/policies/Vestas-SQHE%20Policy_2024.pdf.coredownload.inline.pdf We deliver sustainable energy solutions and services with high reliability and quality, and we are committed to reducing environmental impacts throughout their lifecycle. The SQHE policy and HSE framework is also built upon our Supplier and Employee codes of conduct. The policies cover our entire value chain. Social commitments aren't included in our SQHE policy, but in our Human rights policy, which is available on our website: <https://www.vestas.com/en/sustainability/policies>

(4.6.1.5) Environmental policy content

Environmental commitments

- Commitment to a circular economy strategy
- Commitment to comply with regulations and mandatory standards
- Commitment to implementation of nature-based solutions that support landscape restoration and long-term protection of natural ecosystems
- Commitment to stakeholder engagement and capacity building on environmental issues
- Other environmental commitment, please specify :Commitment to protect and restore biodiversity and ecosystems and to conduct biodiversity impact assessments using the LEAP approach.

Social commitments

- Other social commitment, please specify :The above are covered in our Code of Conduct.

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- Yes, in line with the Paris Agreement

(4.6.1.7) Public availability

Select from:

- Publicly available

(4.6.1.8) Attach the policy

Vestas-SQHE Policy_April 2024.pdf

[\[Add row\]](#)

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

- Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

- Science-Based Targets Initiative (SBTi)
- UN Global Compact
- Other, please specify :Global Renewables Alliance (GRA), WEF First Movers Coalition, Global Offshore Wind Alliance (GOWA)

(4.10.3) Describe your organization's role within each framework or initiative

UN Global Compact: Our Group President & CEO signed the UNGC's "Statement from Business Leaders for Renewed Global Cooperation" in 2020. By doing so, we commit to continuously demonstrate ethical leadership and good governance, invest in addressing systematic inequalities, ensure accountability and transparency, promote equality as well as respect human rights. We, including our CEO, again reiterate this commitment in 2024. Science Based Targets Network (SBTN): Building on the momentum of the SBTi, the SBTN is working to enable companies and cities to set targets for climate and nature. The SBTN is a collaboration of leading global non-profits and mission driven organizations working together to equip companies as well as cities with the guidance to set science-based targets for all of Earth's systems. Vestas actively uses its knowledge and influence of the renewable energy sector to accelerate and collaboratively develop the energy transition for a greener world. World Economic Forum's First Movers Coalition: In 2022, we joined the First Movers Coalition of the World Economic Forum, committing to procure at least 10 percent near zero emissions steel by 2030, and engaged directly with our steel suppliers to incentivise the production of emissions-reduced and near zero-emissions steel. Through this commitment, we are sending a strong demand signal to our steel suppliers that we are eager for transformative changes in the production of steel, and will prioritise working with steel companies that invest in emissions-reduced products. Global Renewables Alliance (GRA): We are engaged in the Global Renewables Alliance, which seeks to strengthen the private sector's voice on accelerating the energy transition, working to triple global renewable energy capacity by 2030 to at least 11,000 GW. We sponsor this initiative, advocate publicly for their messages and engage in their events. Global Offshore Wind Alliance (GOWA): GOWA is a global environmental initiative launched in 2022 that brings together governments, the private sector, international organizations, and other stakeholders to accelerate the deployment of offshore wind power. The alliance was launched last year at COP27 by the International Renewable Energy Agency (IRENA), the Global Wind Energy Council (GWEC), and the Danish government. Vestas is a member of GOWA, and as such, seeks to share knowledge and best practice to help meet the alliance's ambition. In addition to these memberships we are also members of a wide range of trade associations with the goal of accelerating wind and renewable energy buildout, contributing to the reduction of greenhouse gas emissions from fossil fuel-based power sources.

[Fixed row]

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

- Yes, we engaged directly with policy makers
- Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

- Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

- Paris Agreement

(4.11.4) Attach commitment or position statement

Vestas Annual Report 2024.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

- Yes

(4.11.6) Types of transparency register your organization is registered on

Select all that apply

- Mandatory government register
- Voluntary government register
- Non-government register

(4.11.7) Disclose the transparency registers on which your organization is registered & the relevant ID numbers for your organization

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

Vestas has a structured governance process to ensure that all external engagement activities – including direct lobbying, trade association memberships, and broader advocacy – are consistent with our environmental commitments and transition plan. Our political engagement is guided by the Employee Code of Conduct and the Business Ethics Policy, which establish that all engagement must be legal, ethical, and transparent. These policies apply across all geographies in which Vestas operates and are supplemented by specific rules prohibiting political donations to parties or individuals. The Public Affairs department has responsibility for political influence and lobbying activities. The Head of Public Affairs oversees all activities globally and ensures consistency with corporate environmental strategy. Oversight is embedded in governance through quarterly reporting to Executive Management and the Board of Directors, which provides a systematic check that engagement activities, including those of our trade associations, remain aligned with our climate commitments and transition plan. The Head of Public Affairs is directly accountable to the Group Senior Vice President of MarCom, Sustainability, and Public Affairs, who reports to the Chief Sales Officer and ultimately to the CEO. If any engagement activity or trade association stance is identified as inconsistent with Vestas' environmental commitments or the Paris Agreement, the matter is escalated via this governance chain. Vestas can then take corrective action, which may include direct engagement with the trade association to adjust its position, public clarification of Vestas' own stance, or withdrawal of support from the association if misalignment persists. This monitoring system ensures that corrective measures are taken in a timely and transparent manner. Vestas' external engagement is directly linked to our material impacts, risks, and opportunities. We have identified a relevant positive material impact, namely that our policy advocacy contributes to accelerating the deployment of wind energy, which supports climate change mitigation. Our political engagement also helps mitigate the identified material financial risk of insufficient market conditions. Through these processes, Vestas ensures that political influence is consistent with our environmental and strategy and transition plan, strengthening our contribution to the energy transition in alignment with the Paris Agreement.

[Fixed row]

(4.11.1) On what policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with policy makers in the reporting year?

Row 1

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

EU Clean Industrial Deal

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Energy and renewables

Renewable energy generation

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

Regional

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

EU28

Europe

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Support with no exceptions

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

Ad-hoc meetings

Responding to consultations

Submitting written proposals/inquiries

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: The EU Clean Industrial Deal is directly relevant to Vestas' commitment to align with the Paris Agreement and deliver a 1.5°C pathway, as it supports scaling renewable energy manufacturing capacity and competitiveness in Europe. A strong industrial policy reduces supply chain emissions, increases resilience, and supports our transition plan. Engagement: Vestas engages EU policymakers directly and via WindEurope to advocate for measures that accelerate clean energy deployment, strengthen domestic manufacturing, and create a level playing field. Outcomes and impacts: A positive impact is expected through improved access to financing, strengthened supply chains, and accelerated renewable deployment. Risks arise if policies are delayed or insufficient, leading to underinvestment in critical infrastructure. Measurement: Success is measured through the outcomes of specific policies proposed under the CID, such as the State Aid Framework, Circular Economy Act, and CFD guidance, and their alignment with Vestas priorities.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

Paris Agreement

Row 2**(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers**

Inflation Reduction Act

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Financial mechanisms (e.g., taxes, subsidies, etc.)

- Subsidies for renewable energy projects

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

- National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

- United States of America

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

- Support with no exceptions

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Ad-hoc meetings
- Discussion in public forums
- Responding to consultations
- Submitting written proposals/inquiries

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: The IRA provides long-term policy certainty and investment signals for renewable energy in the U.S., directly contributing to Vestas' transition plan by driving market expansion, emissions reduction, and manufacturing in clean energy technology. Engagement: Vestas engages directly with U.S. policymakers, the American Clean Power Association, and local stakeholders to ensure the IRA's implementation supports wind energy deployment and sustainable supply chains. Outcomes and impacts: The IRA has a strongly positive anticipated impact by lowering costs, increasing project pipelines, and enabling more rapid decarbonization. Risks relate to implementation challenges or potential rollbacks. Measurement: Vestas measures success by monitoring development of the IRA, U.S. order intake linked to IRA incentives, and number of projects reaching financial close.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

Paris Agreement

Row 3

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Policies for modernizing grid infrastructure

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Energy and renewables

Electricity grid access for renewables

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

Global

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Support with no exceptions

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

Ad-hoc meetings

Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: Grid modernization is a prerequisite for achieving Vestas' transition plan, as insufficient grid capacity is a material risk that limits renewable buildout.

Engagement: Vestas advocates for investment in grid capacity and digitalization through international forums (COP, WEF), trade associations, and direct engagement with regulators and transmission system operators. Outcomes and impacts: A positive impact is expected through improved renewable integration and project realization. Negative impacts could arise if investment lags, constraining Vestas' growth and delaying decarbonization. Measurement: Success is measured by grid connection times for new projects, volume of wind capacity integrated into grids, and reduction in curtailment rates in key markets.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

Paris Agreement

Row 4

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Policies for improving wind energy auction design to increase project realization and profitability

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Energy and renewables

Renewable energy generation

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

Global

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

- Support with no exceptions

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Ad-hoc meetings
- Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: Auction design directly affects Vestas' ability to deliver profitable, sustainable projects, supporting our commitments to scale renewable deployment and ensure supply chain sustainability. Poorly designed auctions risk underbidding, project cancellations, and financial strain. Engagement: Vestas engages with policymakers across Europe, the Americas, and Asia to advocate for auctions that balance affordability with supply chain sustainability and realistic delivery. Outcomes and impacts: Positive impacts include improved project realization rates and profitability, supporting both our financial resilience and transition plan. A negative impact could occur if auctions prioritize lowest price without regard to delivery feasibility. Measurement: Success is measured by project realization rates, auction capacity awarded and built, use of CfD schemes in auctions, and governments refraining from use of negative bidding models, hampering profitability and project realization.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

- Paris Agreement

Row 5

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Policies for streamlining and accelerating permitting of renewable energy projects

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

- Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Energy and renewables

- Renewable energy generation

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

- Global

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

- Support with no exceptions

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Ad-hoc meetings
- Discussion in public forums

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: Long permitting timelines are one of the greatest risks to Vestas' transition plan, as they delay renewable deployment and increase costs. Accelerated permitting directly supports our Paris-aligned commitment. Engagement: Vestas advocates for harmonized, streamlined permitting frameworks with national and EU policymakers, leveraging trade associations and direct government dialogues. Outcomes and impacts: Positive outcomes include faster project lead times, lower financing costs, and accelerated decarbonization. Risks include slow regulatory uptake, which would constrain market growth. Measurement: Success is tracked via average permitting timelines in core markets, and in the EU, Member State adoption of the existing, effective permitting rules under the RED III Directive.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

- Paris Agreement

Row 6

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

- Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Transparency and due diligence

- Corporate environmental reporting

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

- Regional

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

- EU28
- Europe

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

- Support with minor exceptions

(4.11.1.7) Details of any exceptions and your organization's proposed alternative approach to the policy, law, or regulation

We are in favour of simplifying sustainability reporting, but oppose deregulation that reduce meaningful corporate sustainability efforts.

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Ad-hoc meetings
- Participation in working groups organized by policy makers
- Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Relevance: The package is relevant to Vestas' ability to report meaningfully and efficiently on sustainability impacts and progress toward our commitments. Streamlined but robust reporting frameworks support transparency, investor confidence, and alignment with our transition plan. Engagement: Vestas engages with EU policymakers directly and via industry associations to advocate for simplification that reduces unnecessary administrative burden while preserving the integrity of sustainability disclosures. Outcomes and impacts: A positive impact is expected through improved reporting efficiency, freeing resources for climate action while maintaining credibility. A risk would be oversimplification that weakens reporting standards. Measurement: Success is measured by alignment of EU reporting frameworks with Vestas' internal sustainability disclosures, reduction in administrative resources required for reporting, and continued recognition in sustainability ratings and benchmarks.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

- Paris Agreement

[Add row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

- Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

- WindEurope

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

- Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

- Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with WindEurope because we share the position to increase buildout of wind energy in Europe, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

185000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to advance EU policy supporting wind energy deployment, improved permitting, auction design, and grid buildout in alignment with the Paris Agreement. Success is measured by adoption of EU policy reforms, renewable capacity awarded/realized, and association alignment reviews.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- Paris Agreement

Row 2

(4.11.2.1) Type of indirect engagement

Select from:

- Indirect engagement via a trade association

(4.11.2.4) Trade association

Asia and Pacific

- Clean Energy Council

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

- Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

- Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with CEC because we share the position to increase buildout of wind energy in Australia, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

50000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to shape Australian renewable auctions, permitting processes, and grid investments to expand wind deployment. Success is measured by auction outcomes, project realization rates, and policy adoption supporting renewable buildout.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 3

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

North America

American Clean Power Association (formerly AWEA)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

- Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

- Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with ACP because we share the position to increase buildout of wind energy in the US, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

850000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to shape U.S. policies such as IRA implementation, permitting reform, and grid modernization to expand wind energy market. Success is measured by U.S. project pipelines, financial close rates.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 4

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

Global

Global Wind Energy Council (GWEC)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with GWEC because we share the position to increase buildout of wind energy globally, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

100000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to promote global policies that accelerate renewable deployment, reduce trade barriers, and align energy systems with 1.5°C. Success is measured by global renewable capacity growth, alignment of international frameworks, and GWEC's climate advocacy positions.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 5

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

Other trade association in Europe, please specify :Green Power Denmark

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with Green Power Denmark because we share the position to increase buildout of wind energy in Denmark, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

200000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to influence Danish energy policy on permitting, auctions, and grid development to support national and EU climate goals. Success is measured by improvements in permitting timelines, project volumes awarded, and alignment with Paris objectives.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 6

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

Other trade association in Europe, please specify :NedZero

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with NedZero because we share the position to increase buildout of wind energy in the Netherlands, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

66000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to engage on Dutch auctions, permitting, and grid expansion to accelerate renewable buildout. Success is measured by auction outcomes, grid expansion milestones, and alignment with Paris Agreement goals.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 7

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

Africa

South African Wind Energy Association (SAWEA)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with SAWEA because we share the position to increase buildout of wind energy in South Africa, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

16000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to advocate for renewable auctions, faster permitting, and grid investments in South Africa to enable clean energy transition. Success is measured by REIPPPP auction results, grid connection progress, and alignment with Paris goals.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 8

(4.11.2.1) Type of indirect engagement

Select from:

- Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

- Other trade association in Europe, please specify :RenewableUK

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

- Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

- Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with RenewableUK because we share the position to increase buildout of wind energy in the UK, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to engage on UK renewable auctions (CfD), permitting, and grid access to enable sustainable wind deployment. Success is measured by capacity secured in CfD rounds, reduced permitting delays, and alignment with Paris Agreement goals.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

Row 9

(4.11.2.1) Type of indirect engagement

Select from:

Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

Other trade association in Europe, please specify :Green Power Sweden

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

- Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

- Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with Green Power Sweden because we share the position to increase buildout of wind energy in Sweden, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

31000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to support Swedish policies that streamline permitting, improve market conditions, and increase wind capacity deployment. Success is measured by reduced permitting timelines, capacity additions, and association alignment reviews.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

- Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- Paris Agreement

Row 10

(4.11.2.1) Type of indirect engagement

Select from:

- Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

- Other trade association in Europe, please specify :VDMA

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- Climate change

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Our position is consistent with VDMA because we share the position to increase buildout of wind energy in Germany, thus advancing the green energy transition.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

150000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Funding is the annual membership fee. Aim is to promote policies in Germany and the EU that strengthen wind energy markets, auction frameworks, and supply chain competitiveness. Success is measured by auction volumes realized, industrial policy support, and association alignment with Paris commitments.

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

Paris Agreement

[\[Add row\]](#)

(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) Publication

Select from:

In mainstream reports

(4.12.1.3) Environmental issues covered in publication

Select all that apply

Climate change
 Water
 Biodiversity

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

- Strategy
- Governance
- Emission targets
- Emissions figures
- Risks & Opportunities

- Value chain engagement
- Dependencies & Impacts
- Biodiversity indicators
- Public policy engagement
- Content of environmental policies

(4.12.1.6) Page/section reference

51 - 132

(4.12.1.7) Attach the relevant publication

Vestas Annual Report 2024_1.pdf

(4.12.1.8) Comment

Vestas Annual Report 2024 is in line with the ESRS.

[\[Add row\]](#)

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Annually

[Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

IEA NZE 2050

(5.1.1.3) Approach to scenario

Select from:

Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

- Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Policy
- Market
- Reputation
- Technology
- Liability

(5.1.1.6) Temperature alignment of scenario

Select from:

- 1.5°C or lower

(5.1.1.7) Reference year

2022

(5.1.1.8) Timeframes covered

Select all that apply

- 2025
- 2030
- 2050

(5.1.1.9) Driving forces in scenario

Regulators, legal and policy regimes

- Global regulation

- Political impact of science (from galvanizing to paralyzing)
- Level of action (from local to global)
- Global targets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Using the scenario, we assume a focus on clean energy policies and investment and that all current net zero pledges are achieved, following significant efforts to realize near-term reductions. Introduction of carbon prices in all regions is also assumed. Overall net zero emissions electricity in advanced economies is achieved by 2035, and in the same year NZE assumes 50% of heavy truck sales are electric, while more than 65% of new car sales are electric. By 2050, nearly 70% of global electricity generation will be derived from solar PV and wind. In the US, emissions in 2030 are half those in 2005 and reach net zero by 2050 through energy efficiency measures and the decarbonisation of electricity, electrifying end uses and switching industrial processes to low carbon fuels and hydrogen. As part of efforts to decarbonize the energy sector, government policy and industry initiatives focus on CO2 emissions from production, as well as incentivizing alternative low-carbon solutions.

(5.1.1.11) Rationale for choice of scenario

This backward engineered scenario investigates how meeting net-zero emissions by 2050 could be done. This is the boldest IEA scenario, requiring immediate increase of policy action, clean energy investments (incl. infrastructure) and behavioral change. These are parameters that have been keen in choosing this scenario for testing the transitional risks.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

- RCP 2.6

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

- SSP1

(5.1.1.3) Approach to scenario

Select from:

- Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

- Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Acute physical
- Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

- 1.6°C - 1.9°C

(5.1.1.7) Reference year

2014

(5.1.1.8) Timeframes covered

Select all that apply

- 2030
- 2050
- 2070

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- Changes to the state of nature

- Speed of change (to state of nature and/or ecosystem services)
- Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

The severity of e.g. extreme heatwaves, extreme rainfall and floods are less intense than in other of the RCP scenarios. The increase in global surface temperature will stabilize around 1 degree celcius. Disruptions in the supply chain leading to delays in delivering our products and/or increased cost of sourcing is assumed.

(5.1.1.11) Rationale for choice of scenario

The RCP 2.6 scenario assumes aggressive mitigation measures and that global annual GHG emissions peak between 2010-2020, with emissions declining substantially thereafter. The scenario is chosen to represent a radical 'pro-climate' scenario in which the world were to drastically change path and reduce emissions.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

- RCP 4.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

- SSP2

(5.1.1.3) Approach to scenario

Select from:

- Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Acute physical
- Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

- 2.5°C - 2.9°C

(5.1.1.7) Reference year

2014

(5.1.1.8) Timeframes covered

Select all that apply

- 2030
- 2050
- 2070

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- Changes to the state of nature
- Speed of change (to state of nature and/or ecosystem services)
- Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Increasing risks of e.g. extreme heatwaves, extreme rainfall and floods making massive disruption in the supply chain leading to delays in delivering our products and/or increased cost of sourcing is assumed.

(5.1.1.11) Rationale for choice of scenario

The RCP 4.5 scenario assumes strong mitigation measures and emissions peaking around 2040 after which they will decline. The scenario is chosen to keep an optimistic yet realistic view of the global climate situation seen in 2023.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

SSP5

(5.1.1.3) Approach to scenario

Select from:

Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Acute physical

Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

3.5°C - 3.9°C

(5.1.1.7) Reference year

2014

(5.1.1.8) Timeframes covered

Select all that apply

2030
 2050
 2070

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

Changes to the state of nature
 Speed of change (to state of nature and/or ecosystem services)
 Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Increasing risks of e.g. extreme heatwaves, extreme rainfall and floods making massive disruption in the supply chain leading to delays in delivering our products and/or increased cost of sourcing is assumed. Furthermore, the lack of focus on mitigating climate change negatively impacts our business case.

(5.1.1.11) Rationale for choice of scenario

The RCP 8.5 scenario assumes business-as-usual and that emissions continue to rise throughout the 21st century. The scenario is chosen to represent the worst case, where the world would not succeed in reducing CO2 emissions.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

- IEA STEPS (previously IEA NPS)

(5.1.1.3) Approach to scenario

Select from:

- Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

- Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Acute physical
- Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

- 2.0°C - 2.4°C

(5.1.1.7) Reference year

2022

(5.1.1.8) Timeframes covered

Select all that apply

- 2025
- 2030
- 2050

(5.1.1.9) Driving forces in scenario

Regulators, legal and policy regimes

- Global regulation
- Political impact of science (from galvanizing to paralyzing)
- Level of action (from local to global)
- Global targets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

It is assumed that emissions continue to be higher than today's level through mid-century and global temperature rise exceeds the 2 degree celcius limit outlined in the Paris Agreement. Furthermore, it is assumed that EU phases out coal and achieves its new 2030 emissions reduction target (55% reduction in emissions by 2030 compared with 1990 levels). In the US, it is assumed that 100% carbon-free electricity is generated in 20 US states by 2050.

(5.1.1.11) Rationale for choice of scenario

This scenario considers specific policy initiatives that have already been put in place but also of those that are under development as of mid-2021. It assumes that policy proposals are implemented in the near term, even if specific measures required for implementation have yet to be specified. For example, certain countries have announced midcentury net zero emissions targets and goals to achieve full energy access by the end of the decade, without specific implementation plans or policy frameworks.

[Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- Risk and opportunities identification, assessment and management
- Resilience of business model and strategy

(5.1.2.2) Coverage of analysis

Select from:

- Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

The scenario analysis in 2024 identified a few transitional risks as material, while no physical risks have been deemed material. The material transition risks are: Carbon taxes and tariffs, and investments in scope 1 and 2 GHG emission reductions. It also identified three material opportunities connected to climate change: Strong ESG Profile, Diversified revenue streams, and Growth rate of the wind industry. The scenario analysis also supports the assessment of the resilience of our business model and strategy. By highlighting areas in which we have significant risks or opportunities, it helps guide our focus. A key focus area, which also is identified on the basis of our scenario analysis, is the investment in solutions to lower the GHG footprint of our operations and products. By bringing innovative solutions to the market, such as low emission steel, we improve our value proposition and our business resilience. As such, the outcome of scenario analysis informs business decisions and actions both in the short and longer term.

[Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

- Yes, we have a climate transition plan which aligns with a 1.5°C world

(5.2.3) Publicly available climate transition plan

Select from:

- Yes

(5.2.4) Plan explicitly commits to cease all spending on, and revenue generation from, activities that contribute to fossil fuel expansion

Select from:

Yes

(5.2.5) Description of activities included in commitment and implementation of commitment

Vestas does not generate revenue from or spend money towards fossil fuel expansion. Our business is built on renewable energy expansion. As such, expanding fossil fuel is in direct competition with our business model.

(5.2.7) Mechanism by which feedback is collected from shareholders on your climate transition plan

Select from:

We do not have a feedback mechanism in place, but we plan to introduce one within the next two years

(5.2.10) Description of key assumptions and dependencies on which the transition plan relies

Our Sustainability strategy is the center of our climate transition plan. We are committed to become carbon neutral in our own operations by 2030 and to achieve 45% reduction in supply chain emissions intensity by 2030. Furthermore, we are committed to produce zero waste wind turbines by 2040, to be the safest, most inclusive, and socially responsible company in the energy industry, and to lead the transition to a world powered by renewable energy. It is difficult to reach our targets without close collaboration with key stakeholders in our value chain such as our suppliers and customers. For example, we are actively working to ensure availability and expansion of low emission steel, but if our customers aren't creating a demand for the steel then we will not be successful in maturing the industry. A key lever to reach neutrality in our own operations is transitioning our service vehicle fleet to be electric. However, if there is no availability of electric service vehicles that meet the demands required, then it will be difficult to achieve those targets.

(5.2.11) Description of progress against transition plan disclosed in current or previous reporting period

We drive progress in our transition plan through key CO2 reduction actions across scope 1, 2 and 3. For scope 1 and 2 (market-based) combined emissions, we delivered a 4 percent decrease in emissions in 2024 compared to 2023. The reduction was primarily driven by decreased offshore construction activity in the UK, as well as our actions from our transition plan to introduce biomass heating systems in manufacturing and increase adoption of electric vehicles. We also continued to purchase renewable energy credits to cover our energy consumption in the markets where we operate. For scope 3, we track performance based on our scope 3 intensity target, and in 2024 it was 5.66 kg CO2e/MWh generated. Here we saw a 10 percent reduction in emission intensity compared to 2023. The reduction in emissions intensity for scope 3 is driven primarily by data quality improvements for our project cargo transport emissions compared to 2023, as well as improvements in product performance to extend the average lifetime of wind turbines. Great effort was made during 2024 to improve our transport data, moving gradually away from assumptions and industry averages, to primary data from logistic suppliers.

(5.2.12) Attach any relevant documents which detail your climate transition plan (optional)

Vestas AR 2024.pdf

(5.2.13) Other environmental issues that your climate transition plan considers

Select all that apply

Other, please specify :Social responsibility

(5.2.14) Explain how the other environmental issues are considered in your climate transition plan

Targets for reducing in injury rate, targets for women in leadership positions, target for community beneficiaries reached.

[Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

Products and services
 Upstream/downstream value chain
 Investment in R&D
 Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Products and services

(5.3.1.1) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

To mitigate the environmental risks connected to environmental impacts such as waste and CO2 emissions, and to take advantage of environmental opportunities such as the expansion of renewable energy and focus on sustainability in that expansion, we develop our products and services and have for example: 1) Developed an industry-changing blade circularity-technology, which we are currently working on industrializing. If successful, the solution will solve a major recycling challenge in the wind-industry, blades, and render a wind turbine theoretically almost entirely recyclable. 2) Started procuring and developing the market for low emissions steel, and already sold the first projects where part of the wind turbines are made from low emission steel. These steps are industry-leading, and critical for ensuring future availability of low emission steel.

Upstream/downstream value chain

(5.3.1.1) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

To mitigate the environmental risks connected to environmental impacts such as waste and CO2 emissions, and to take advantage of environmental opportunities such as the expansion of renewable energy and focus on sustainability in that expansion, we work with our up- and downstream value chain and have for example: 1) Started procuring and developing the market for low emissions steel, and already sold the first projects where part of the wind turbines are made from low emission steel. These steps are industry-leading, and critical for ensuring future availability of low emission steel. 2) To improve data quality and accuracy on emissions footprint of and recycled content in its products, Vestas is currently in the process of implementing a new system, which enables the collection and trace of actual supply-chain performance on among other things emission footprint and the share of recycled materials. This allows Vestas to work closely with suppliers to improve environmental performance.

Investment in R&D

(5.3.1.1) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

To mitigate the environmental risks connected to environmental impacts such as extreme weather events, and to take advantage of environmental opportunities such as the expansion of renewable energy and focus on sustainability in that expansion, we invest in R&D and have for example: 1) Vestas turbines are exposed to extreme weather conditions in certain parts of the world. Risks related to higher intensity of extreme weather e.g. extreme cold operation conditions impact the strategy and R&D periodization. R&D of our products take into consideration these risks finding new innovative ways to mitigate. This risk is seen mainly impacting long term and The task is to continue Vestas frontier R&D work on wind energy that goes back 40 years, introducing market-leading wind energy solutions that have driven down the cost of energy and taken wind energy from niche to mainstream. One of our actions has been the introduction of the Vestas EnVentus™ wind turbine platform, which represents another significant step forward in the continuous efforts to lower the levelised cost of energy and accelerate the global transition to a more sustainable energy mix. This new platform offers all the latest features to secure a long and robust product life. On February 10th, 2021 Vestas introduced the V236-15.0 MW turbine. The new technology establishes a strong foundation for Vestas' offshore leadership journey by elevating the industry benchmark for performance and continued cost reduction in offshore technology, making Vestas highly competitive in offshore tenders already in 2021. Also this new platform offers all the latest features to secure a long and robust product life. 2) In 2023, Vestas established a partnership with ArcelorMittal to launch a low-emission steel offering that can reduce CO2e emissions from heavy steel plates by 66 percent compared to steel produced via the conventional steelmaking route. Utilising low-emission steel in the top two sections of an offshore tower would translate to approximately 25 percent reduction of emissions. For an entire onshore tower, the CO2e reduction is at least 52 percent. The first project utilising low-emission steel will be the Baltic Power Offshore Wind Project off the coast of Poland. During 2025, we will start the

construction of the offshore wind farm consisting of 76 V236-15.0 MW™ wind turbines out of which 52 will be made with low-emission steel in the top sections of the tower.

Operations

(5.3.1.1) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- Climate change

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

To mitigate the environmental risks connected to environmental impacts such as waste and CO2 emissions, and to take advantage of environmental opportunities such as the expansion of renewable energy and focus on sustainability in that expansion, we transition our operations to reach our carbon neutrality targets and have for example: 1) Piloted two projects with renewably-fuelled Crew Transfer Vessels, which are the service vessels that transport our service technicians to offshore wind turbine platforms when doing service. Transitioning hard to abate sectors such as the marine industry is a huge challenge in reaching global emissions targets. We are leading this effort by creating demand for alternative fuels in vessels, and these efforts are critical in meeting our own neutrality targets. 2) We are transitioning our fleet of service vehicles to be renewably-fuelled, primarily to electric vehicles but we are also investing in other solutions. We work closely with the largest vehicle manufacturers in the world to ensure availability of vehicles that can meet the demands of our operations, both in terms of size and distance they can cover, whilst being electric. These efforts are also critical to meet our own neutrality targets.

[Add row]

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

- Revenues
- Direct costs
- Capital expenditures
- Access to capital

(5.3.2.2) Effect type

Select all that apply

- Risks
- Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

- Climate change

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

The projected expansion of wind energy and global focus on transitioning energy systems to be sustainable is a significant opportunity to Vestas, which positively impacts our revenue projections. The increasing focus on sustainability and Vestas' strong performance in the area is an important lever that also enables us to attract capital, among other ways through sustainability-linked bonds and loans. With the target of becoming carbon neutral in our own operations by 2030, and to reduce carbon emissions in our supply chain by 45% per MWh generated by 2030, we do need to invest significant amounts of money to transition our operations and our supply chain. Among other things, we invest in replacing heating systems to be renewable throughout our operations, and we are transitioning our fleet of service vehicles to be fully electric. To reduce our scope 3 emissions, we are investing in and collaborating with suppliers to develop low emission materials such as low emission steel. Our transition journey involves both direct costs and significant capital expenditures.

[\[Add row\]](#)

(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?

	Identification of spending/revenue that is aligned with your organization's climate transition	Methodology or framework used to assess alignment with your organization's climate transition	Indicate the level at which you identify the alignment of your spending/revenue with a sustainable finance taxonomy
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>	<p>Select all that apply</p> <p><input checked="" type="checkbox"/> A sustainable finance taxonomy</p>	<p>Select from:</p> <p><input checked="" type="checkbox"/> At both the organization and activity level</p>

[Fixed row]

(5.4.1) Quantify the amount and percentage share of your spending/revenue that is aligned with your organization's climate transition.

Row 1

(5.4.1.1) Methodology or framework used to assess alignment

Select from:

A sustainable finance taxonomy

(5.4.1.2) Taxonomy under which information is being reported

Select from:

EU Taxonomy for Sustainable Activities

(5.4.1.3) Objective under which alignment is being reported

Select from:

Climate change mitigation

(5.4.1.4) Indicate whether you are reporting eligibility information for the selected objective

Select from:

Yes

(5.4.1.5) Financial metric

Select from:

Revenue/Turnover

(5.4.1.6) Amount of selected financial metric that is aligned in the reporting year (currency)

17081000000

(5.4.1.7) Percentage share of selected financial metric aligned in the reporting year (%)

99

(5.4.1.8) Percentage share of selected financial metric planned to align in 2025 (%)

99

(5.4.1.9) Percentage share of selected financial metric planned to align in 2030 (%)

100

(5.4.1.10) Percentage share of financial metric that is taxonomy-eligible in the reporting year (%)

99

(5.4.1.11) Percentage share of financial metric that is taxonomy non-eligible in the reporting year (%)

1

(5.4.1.12) Details of the methodology or framework used to assess alignment with your organization's climate transition

In alignment with the EU Taxonomy. For more information refer to Vestas Annual Report 2024 page 93-97. <https://www.vestas.com/content/dam/vestas-com/global/en/investor/reports-and-presentations/financial/2024/fy-2024/Vestas%20Annual%20Report%202024.pdf.coredownload.inline.pdf>

Row 2

(5.4.1.1) Methodology or framework used to assess alignment

Select from:

- A sustainable finance taxonomy

(5.4.1.2) Taxonomy under which information is being reported

Select from:

- EU Taxonomy for Sustainable Activities

(5.4.1.3) Objective under which alignment is being reported

Select from:

- Climate change mitigation

(5.4.1.4) Indicate whether you are reporting eligibility information for the selected objective

Select from:

- Yes

(5.4.1.5) Financial metric

Select from:

- CAPEX

(5.4.1.6) Amount of selected financial metric that is aligned in the reporting year (currency)

1470000000

(5.4.1.7) Percentage share of selected financial metric aligned in the reporting year (%)

(5.4.1.8) Percentage share of selected financial metric planned to align in 2025 (%)

99

(5.4.1.9) Percentage share of selected financial metric planned to align in 2030 (%)

100

(5.4.1.10) Percentage share of financial metric that is taxonomy-eligible in the reporting year (%)

99

(5.4.1.11) Percentage share of financial metric that is taxonomy non-eligible in the reporting year (%)

1

(5.4.1.12) Details of the methodology or framework used to assess alignment with your organization's climate transition

In alignment with the EU Taxonomy. For more information refer to Vestas Annual Report 2024 page 93-97. <https://www.vestas.com/content/dam/vestas-com/global/en/investor/reports-and-presentations/financial/2024/fy-2024/Vestas%20Annual%20Report%202024.pdf.coredownload.inline.pdf>

Row 3

(5.4.1.1) Methodology or framework used to assess alignment

Select from:

A sustainable finance taxonomy

(5.4.1.2) Taxonomy under which information is being reported

Select from:

EU Taxonomy for Sustainable Activities

(5.4.1.3) Objective under which alignment is being reported

Select from:

Climate change mitigation

(5.4.1.4) Indicate whether you are reporting eligibility information for the selected objective

Select from:

Yes

(5.4.1.5) Financial metric

Select from:

OPEX

(5.4.1.6) Amount of selected financial metric that is aligned in the reporting year (currency)

354000000

(5.4.1.7) Percentage share of selected financial metric aligned in the reporting year (%)

92

(5.4.1.8) Percentage share of selected financial metric planned to align in 2025 (%)

92

(5.4.1.9) Percentage share of selected financial metric planned to align in 2030 (%)

100

(5.4.1.10) Percentage share of financial metric that is taxonomy-eligible in the reporting year (%)

92

(5.4.1.11) Percentage share of financial metric that is taxonomy non-eligible in the reporting year (%)

8

(5.4.1.12) Details of the methodology or framework used to assess alignment with your organization's climate transition

In alignment with the EU Taxonomy. For more information refer to Vestas Annual Report 2024 page 93-97. <https://www.vestas.com/content/dam/vestas-com/global/en/investor/reports-and-presentations/financial/2024/fy-2024/Vestas%20Annual%20Report%202024.pdf.coredownload.inline.pdf>
[Add row]

(5.4.2) Quantify the percentage share of your spending/revenue that was associated with eligible and aligned activities under the sustainable finance taxonomy in the reporting year.

Row 1

(5.4.2.1) Economic activity

Select from:

- Electricity generation from wind power

(5.4.2.2) Taxonomy under which information is being reported

Select from:

- EU Taxonomy for Sustainable Activities

(5.4.2.3) Taxonomy alignment

Select from:

- Taxonomy-aligned

(5.4.2.4) Financial metrics

Select all that apply

- Turnover
- CAPEX
- OPEX

(5.4.2.5) Types of substantial contribution

Select all that apply

Activity enabling mitigation

(5.4.2.6) Taxonomy-aligned turnover from this activity in the reporting year (currency)

3579000000

(5.4.2.7) Taxonomy-aligned turnover from this activity as % of total turnover in the reporting year

78

(5.4.2.8) Taxonomy-aligned turnover from this activity that substantially contributed to climate change mitigation as a % of total turnover in the reporting year

78

(5.4.2.9) Taxonomy-aligned turnover from this activity that substantially contributed to climate change adaptation as a % of total turnover in the reporting year

0

(5.4.2.13) Taxonomy-aligned CAPEX from this activity in the reporting year (currency)

1288000000

(5.4.2.14) Taxonomy-aligned CAPEX from this activity as % of total CAPEX in the reporting year

87

(5.4.2.15) Taxonomy-aligned CAPEX from this activity that substantially contributed to climate change mitigation as a % of total CAPEX in the reporting year

87

(5.4.2.16) Taxonomy-aligned CAPEX from this activity that substantially contributed to climate change adaptation as a % of total CAPEX in the reporting year

0

(5.4.2.20) Taxonomy-aligned OPEX from this activity in the reporting year (currency)

206000000

(5.4.2.21) Taxonomy-aligned OPEX from this activity as % of total OPEX in the reporting year

53

(5.4.2.22) Taxonomy-aligned OPEX from this activity that substantially contributed to climate change mitigation as a % of total OPEX in the reporting year

53

(5.4.2.23) Taxonomy-aligned OPEX from this activity that substantially contributed to climate change adaptation as a % of total OPEX in the reporting year

0

(5.4.2.27) Calculation methodology and supporting information

Available in Annual Report 2024 page 93 - 97

(5.4.2.28) Substantial contribution criteria met

Select from:

Yes

(5.4.2.29) Details of substantial contribution criteria analysis

Our manufacturing activities substantially contribute to climate change mitigation by manufacturing renewable energy technologies, and our development, construction, service, and sale of spare parts activities substantially contribute to climate change mitigation by developing, constructing, or servicing wind farms and thereby generating or supporting electricity generation from wind power. In 2023, we adjusted the allocation of our economic activities to meet the updated guidance of the commission notice adopted on the 20th of October 2023. We have also assessed the additional four environmental objectives of the Environmental Delegated Act and the sustainable activities relating thereto but have concluded that none of our activities substantially contribute to any of these environmental objectives. In line with FAQ 139 of the first commission notice, our service and development activities are now allocated to activity 4.3 instead of activity 7.6, as neither activity is related to technical building systems, which activity 7.6 is limited to. However, in line with the description of activity 4.3, the technical screening criteria of activity 7.6 apply to our service activities, as they are an integral element of the 'maintenance and repair of renewable energy technologies' as referred to under activity 7.6. As such, the allocation change for service only affects the presentation of the activity, not the alignment criteria. In line with FAQ 22 of the second commission notice and IFRS 15's requirements on bundled performance obligations to be combined for reporting purposes, revenue from supply-only, supply-and-installation and EPC contracts is now reported together under activity 3.1, while revenue from our service and sale of spare parts activities is reported together under activity 4.3, as these activities are not treated as distinct in our financial accounting. In line with FAQ 9 of the first commission notice, activities have only been screened against DNSH criteria that are relevant to the activity. Following the changes in allocation, we report our manufacturing and construction activities as eligible under activity 3.1: Manufacture of renewable energy technologies, and our development, service, and sale of spare parts activities as eligible under activity 4.3: Electricity generation from wind power.

(5.4.2.30) Do no significant harm requirements met

Select from:

Yes

(5.4.2.31) Details of do no significant harm analysis

The requirements of the DNSH criteria related to Climate Change Adaptation are applicable to all our eligible activities. To comply with the criteria, we have conducted a climate risk analysis in line with recommendations from the TCFD framework and the requirements of Appendix A of the Taxonomy for all our economic activities and critical suppliers. The materiality of the significant risks identified has been assessed, and adequate adaptation solutions have been implemented where necessary. Further elaboration on the methodological approach and the results is available in our Vestas Climate Risk Report 2023 (see Climate Scenario Analysis 2023 on vestas.com). Activity 3.1 All DNSH criteria of Activity 3.1 are applicable to our manufacturing activities. However, we do not consider Transition to Circular Economy applicable to our construction activities, as the criteria is related to the manufacture of products. We confirm compliance with Sustainable Use and Protection of Water and Marine Resources and Protection and Restoration of Biodiversity and Ecosystems as defined in the EU Taxonomy, as an Environmental Impact Assessment ("EIA") or screening in accordance with Directive 2011/92/EU, including an assessment of the impact on water in accordance with Directive 2000/60/EC or equivalent, has been carried out for all manufacturing facilities and construction sites in the EU. For facilities and construction sites in countries outside the EU, an EIA or screening as well as water permits equivalent to the standards of the EU shall be present. We confirm compliance with Transition to Circular Economy for our manufacturing activities as we, among other actions, have committed to ambitious targets and initiatives for design and operational circularity and material recovery through our Circular Roadmap (see more information page 28- 31), and have innovated a groundbreaking new technology that renders epoxy-infused blades fully circular (see more information page 29). We confirm compliance with Pollution Prevention and Control, as our Prohibited and Restricted Substance Management document, which is used to regulate restricted and prohibited chemicals at all business levels and units at Vestas, meet the standards under

the five sub-criteria: Persistent Organic Pollutants, Mercury, Ozone Depleting Substances, Substances in Electrical and Electronic Equipment, and Certain Dangerous Substances

(5.4.2.32) Minimum safeguards compliance requirements met

Select from:

- Yes

(5.4.2.33) Attach any supporting evidence

Vestas Annual Report 2024_1.pdf

Row 2

(5.4.2.1) Economic activity

Select from:

- Manufacture of renewable energy technologies

(5.4.2.2) Taxonomy under which information is being reported

Select from:

- EU Taxonomy for Sustainable Activities

(5.4.2.3) Taxonomy alignment

Select from:

- Taxonomy-aligned

(5.4.2.4) Financial metrics

Select all that apply

- Turnover
- CAPEX
- OPEX

(5.4.2.5) Types of substantial contribution

Select all that apply

Activity enabling mitigation

(5.4.2.6) Taxonomy-aligned turnover from this activity in the reporting year (currency)

13502000000

(5.4.2.7) Taxonomy-aligned turnover from this activity as % of total turnover in the reporting year

21

(5.4.2.8) Taxonomy-aligned turnover from this activity that substantially contributed to climate change mitigation as a % of total turnover in the reporting year

21

(5.4.2.9) Taxonomy-aligned turnover from this activity that substantially contributed to climate change adaptation as a % of total turnover in the reporting year

0

(5.4.2.13) Taxonomy-aligned CAPEX from this activity in the reporting year (currency)

182000000

(5.4.2.14) Taxonomy-aligned CAPEX from this activity as % of total CAPEX in the reporting year

12

(5.4.2.15) Taxonomy-aligned CAPEX from this activity that substantially contributed to climate change mitigation as a % of total CAPEX in the reporting year

12

(5.4.2.16) Taxonomy-aligned CAPEX from this activity that substantially contributed to climate change adaptation as a % of total CAPEX in the reporting year

0

(5.4.2.20) Taxonomy-aligned OPEX from this activity in the reporting year (currency)

148000000

(5.4.2.21) Taxonomy-aligned OPEX from this activity as % of total OPEX in the reporting year

39

(5.4.2.22) Taxonomy-aligned OPEX from this activity that substantially contributed to climate change mitigation as a % of total OPEX in the reporting year

39

(5.4.2.23) Taxonomy-aligned OPEX from this activity that substantially contributed to climate change adaptation as a % of total OPEX in the reporting year

0

(5.4.2.27) Calculation methodology and supporting information

Available in Annual Report 2024 page 93 - 97

(5.4.2.28) Substantial contribution criteria met

Select from:

Yes

(5.4.2.29) Details of substantial contribution criteria analysis

Our manufacturing activities substantially contribute to climate change mitigation by manufacturing renewable energy technologies, and our development, construction, service, and sale of spare parts activities substantially contribute to climate change mitigation by developing, constructing, or servicing wind farms and thereby generating or supporting electricity generation from wind power. In 2023, we adjusted the allocation of our economic activities to meet the updated guidance of the commission notice adopted on the 20th of October 2023. We have also assessed the additional four environmental objectives of the Environmental Delegated Act and the sustainable activities relating thereto but have concluded that none of our activities substantially contribute to any of these environmental objectives. In line with FAQ 139 of the first commission notice, our service and development activities are now allocated to activity 4.3 instead of activity 7.6, as neither activity is related to technical building systems, which activity 7.6 is limited to. However, in line with the description of activity 4.3, the technical screening criteria of activity 7.6 apply to our service activities, as they are an integral element of the 'maintenance and repair of renewable energy technologies' as referred to under activity 7.6. As such, the allocation change for service only affects the presentation of the activity, not the alignment criteria. In line with FAQ 22 of the second commission notice and IFRS 15's requirements on bundled performance obligations to be combined for reporting purposes, revenue from supply-only, supply-and-installation and EPC contracts is now reported together under activity 3.1, while revenue from our service and sale of spare parts activities is reported together under activity 4.3, as these activities are not treated as distinct in our financial accounting. In line with FAQ 9 of the first commission notice, activities have only been screened against DNSH criteria that are relevant to the activity. Following the changes in allocation, we report our manufacturing and construction activities as eligible under activity 3.1: Manufacture of renewable energy technologies, and our development, service, and sale of spare parts activities as eligible under activity 4.3: Electricity generation from wind power.

(5.4.2.30) Do no significant harm requirements met

Select from:

Yes

(5.4.2.31) Details of do no significant harm analysis

Climate Change Adaptation The requirements of the DNSH criteria related to Climate Change Adaptation are applicable to all our eligible activities. To comply with the criteria, we have conducted a climate risk analysis in line with recommendations from the TCFD framework and the requirements of Appendix A of the Taxonomy for all our economic activities and critical suppliers. The materiality of the significant risks identified has been assessed, and adequate adaptation solutions have been implemented where necessary. Further elaboration on the methodological approach and the results is available in our Vestas Climate Risk Report 2023 (see Climate Scenario Analysis 2023 on vestas.com). Activity 4.3 All DNSH criteria of Activity 4.3 are applicable to our development activities. Only Climate Change Adaptation is applicable to our service and sale of spare parts activities. We confirm compliance with Sustainable Use and Protection of Water and Marine Resources and Protection and Restoration of Biodiversity and Ecosystems, as an EIA or screening in accordance with Directive 2011/92/EU is carried out for all development projects in the EU, and because we do not hamper the achievement of good environmental status as set out in Directive 2008/56/EC in offshore development projects. For development projects in countries outside EU, an EIA or screening equivalent to the standards of the EU internationally recognised EIA best practices is conducted, and good environmental status for offshore projects is ensured. We confirm compliance with Transition to Circular Economy, as the few components used in development are highly durable, easy to dismantle and reuse, and recyclable to a great extent at end of life

(5.4.2.32) Minimum safeguards compliance requirements met

Select from:

Yes

(5.4.2.33) Attach any supporting evidence

Vestas Annual Report 2024_1.pdf

[Add row]

(5.4.3) Provide any additional contextual and/or verification/assurance information relevant to your organization's taxonomy alignment.

(5.4.3.1) Details of minimum safeguards analysis

Minimum Safeguards Vestas works with human rights according to the United Nations Guiding Principles on Business and Human Rights ("UNGPs") and Organisation for Economic Co-operation and Development ("OECD") Guidelines for Multinational Enterprises. Our commitment to respect human rights is embedded into several policies including our Human Rights Policy and Codes of Conduct. We constantly work to identify and assess salient human rights issues and risks in our operations through our corporate-wide human rights assessments every third year, and our due diligence systems both upstream and downstream in the value chain on an ongoing basis. We proactively take measures to prevent and mitigate risks and make our Operational Grievance Mechanism and EthicsLine channels available for affected stakeholders to raise concerns and access remediation where necessary. For more information, visit our corporate human rights website. Our Global and Regional Anti-Bribery and Corruption Compliance Programme consists of five pillars: program governance, learning & awareness, culture & behaviour, monitoring & auditing, and EthicsLine. Our annual Global Anti Bribery and Corruption Survey is taken by Vestas employees globally and ensures that we can spot corruption risks proactively to take appropriate prevention and mitigation actions in our Compliance Programmes. For more information see p. 52 of the Sustainability Report. Our Employee Code of Conduct and Supplier Code of Conduct each include a section on competition law which contains clear expectations on how our employees and suppliers should behave to ensure fair competition. We have also developed a detailed Competition Law Guideline and mandatory e-learning on Competition Law for our office employees. Our Tax Policy covers all decisions that directly or indirectly affect reporting and/or payment of taxes under the liability of any Vestas Group Company, and our Tax Risk Management reporting. During 2023, we have not registered any final court convictions violating labour law & human rights, tax laws, corruption laws, or fair competition laws against the Vestas Group or senior management

(5.4.3.2) Additional contextual information relevant to your taxonomy accounting

Refer to Vestas Annual Report 2024 page 93 - 97

(5.4.3.3) Indicate whether you will be providing verification/assurance information relevant to your taxonomy alignment in question 13.1

Select from:

Yes

[Fixed row]

(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

(5.5.1) Investment in low-carbon R&D

Select from:

Yes

(5.5.2) Comment

We continuously work to lower the environmental footprint of our products and services through 1) lowering the emissions footprint of the materials we use, 2) lowering the emissions footprint of how we operate, 3) increasing the share of recycled materials in our products and the end-of-life recyclability of our products, 4) extending the lifetime of our products so they provide value for longer. Research and Development specifically goes into (1), (3), and (4).

[Fixed row]

(5.5.2) Provide details of your organization's investments in low-carbon R&D for capital goods products and services over the last three years.

Row 1

(5.5.2.1) Technology area

Select from:

Recycling

(5.5.2.2) Stage of development in the reporting year

Select from:

Pilot demonstration

(5.5.2.3) Average % of total R&D investment over the last 3 years

1

(5.5.2.5) Average % of total R&D investment planned over the next 5 years

2

(5.5.2.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

Refer to page 86 - 92 of Vestas Annual Report 2024. Our blade circularity solution tackles a longstanding issue in the wind industry, i.e., the recyclability of epoxy wind turbine blades. The solution enables recycling of all epoxy-infused blades, creating a circularity loop for blades. Instead of sitting in landfilling, these valuable blades can be reused, reducing the need for virgin materials, and lowering the GHG emissions.

[Add row]

(5.10) Does your organization use an internal price on environmental externalities?

	Use of internal pricing of environmental externalities	Primary reason for not pricing environmental externalities	Explain why your organization does not price environmental externalities
	Select from: <input checked="" type="checkbox"/> No, but we plan to in the next two years	Select from: <input checked="" type="checkbox"/> No standardized procedure	We have chosen to investigate and re-evaluate how we in the best way introduce a carbon price in the company and what scope it should cover.

[Fixed row]

(5.11) Do you engage with your value chain on environmental issues?

Suppliers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

- Yes

(5.11.2) Environmental issues covered

Select all that apply

- Climate change

Customers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

- Yes

(5.11.2) Environmental issues covered

Select all that apply

- Climate change

Investors and shareholders

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

- No, but we plan to within the next two years

(5.11.3) Primary reason for not engaging with this stakeholder on environmental issues

Select from:

- Not an immediate strategic priority

(5.11.4) Explain why you do not engage with this stakeholder on environmental issues

We are currently prioritizing engagements with our suppliers, but we plan to engage investors and shareholders in the next two years.

Other value chain stakeholders

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

Yes

(5.11.2) Environmental issues covered

Select all that apply

Climate change

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

Climate change

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

Contribution to supplier-related Scope 3 emissions

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

- 1-25%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

We currently lack a threshold for assessing our suppliers' absolute numbers in environmental impacts. Instead, we evaluate their performance via the KPI survey. This survey asks if suppliers track and set reduction targets for CO2 emissions, including scope 3 emissions, and if they commit to science-based targets. We also gather data on their use of renewable energy, waste reduction efforts, and product circularity for Vestas.

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

- None

[Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

- Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- Material sourcing
- Procurement spend
- Regulatory compliance
- Business risk mitigation
- Strategic status of suppliers

- Product safety and compliance
- In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to climate change
- Other, please specify :Carbon emissions intensive materials

(5.11.2.4) Please explain

Vestas has set ambitious environmental sustainability goals, aiming to reduce carbon emissions in scope 3 by 45% per MWh generated by 2030 and to produce zero-waste turbines by 2040. To achieve these targets, we are collaborating closely with our suppliers, sharing expertise, setting clear expectations for enhanced sustainability performance, and securing commitments across the industry. Given the extensive network of suppliers, we prioritize engagement based on the specific activities and their impact on our sustainability goals. One of our key initiatives is the annual Supplier Forum, which serves as a platform for sharing business perspectives, setting expectations, and communicating our environmental sustainability goals. In 2024, we engaged with 117 suppliers, selected based on our business relationships, spend & supplier segmentation. Beyond the forum, we actively engage our suppliers in environmental data collection, driven by safety and quality assessments, risk mitigation, and regulatory compliance.

[Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

- Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

- Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Vestas requires our suppliers, both existing and potential, to uphold the principles in our Supplier Code of Conduct. To support and validate this expectation, Vestas conducts onboarding and due diligence process: (1) Supplier registration and Pre-screening: All suppliers undergo a Sanctions & Business Ethics screening before

engaging with them contractually. (2) Self-Assessment: Self-assessment covering topics in Vestas' Supplier Code of Conduct including environment. All suppliers with a score of 70% or above in all chapters will proceed to the next step in the onboarding process. (3) Supplier Creation (4) On-site Assessment: Cross-functional assessments may be performed by Vestas' own teams and Vestas' third parties for direct and indirect suppliers, respectively. (5) Manage Supplier Performance: We continuously monitor supplier performance and relationship management. Due diligence activities after the onboarding of suppliers are conducted based on a risk evaluation. Such activities include but are not limited to, supplier scorecards, performance review meetings, business review meetings, and third-party sustainability audits.

[Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

- Implementation of emissions reduction initiatives

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Off-site third-party audit
- On-site third-party audit
- Supplier scorecard or rating
- Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

- 100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

100%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

76-99%

(5.11.6.12) Comment

Vestas requires our suppliers, both existing and potential, to uphold the principles outlined in our Supplier Code of Conduct. To support and validate this expectation, we conduct a comprehensive onboarding and due diligence process. This process includes several steps: supplier registration and pre-screening, where all suppliers undergo a Sanctions & Business Ethics screening before contractual engagement; a self-assessment covering topics in Vestas' Supplier Code of Conduct, with only those scoring 70% or higher in all chapters proceeding to the next step; supplier creation; and on-site assessments, which may be performed by Vestas' teams or third parties for direct and indirect suppliers, respectively. We continuously monitor supplier performance and manage relationships through due diligence activities based on risk evaluation, including supplier scorecards, performance review meetings, and third-party sustainability audits. Additionally, as part of our performance monitoring, we send out the Safety and Sustainability Survey to suppliers, covering topics such as emissions reduction initiatives, renewable energy purchases and targets, and waste and resource reduction.

Climate change

(5.11.6.1) Environmental requirement

Select from:

Purchasing of low-carbon or renewable energy

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Off-site third-party audit
- On-site third-party audit
- Supplier scorecard or rating
- Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

- 100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

- 100%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

- 76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

- 76-99%

(5.11.6.12) Comment

Vestas requires our suppliers, both existing and potential, to uphold the principles outlined in our Supplier Code of Conduct. To support and validate this expectation, we conduct a comprehensive onboarding and due diligence process. This process includes several steps: supplier registration and pre-screening, where all suppliers undergo a Sanctions & Business Ethics screening before contractual engagement; a self-assessment covering topics in Vestas' Supplier Code of Conduct, with only those scoring 70% or higher in all chapters proceeding to the next step; supplier creation; and on-site assessments, which may be performed by Vestas' teams or third parties for direct and indirect suppliers, respectively. We continuously monitor supplier performance and manage relationships through due diligence activities

based on risk evaluation, including supplier scorecards, performance review meetings, and third-party sustainability audits. Additionally, as part of our performance monitoring, we send out the Safety and Sustainability Survey to suppliers, covering topics such as emissions reduction initiatives, renewable energy purchases and targets, and waste and resource reduction.

Climate change

(5.11.6.1) Environmental requirement

Select from:

- Setting a low-carbon or renewable energy target

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Off-site third-party audit
- On-site third-party audit
- Supplier scorecard or rating
- Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

- 100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

- 100%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

- 76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

76-99%

(5.11.6.12) Comment

Vestas requires our suppliers, both existing and potential, to uphold the principles outlined in our Supplier Code of Conduct. To support and validate this expectation, we conduct a comprehensive onboarding and due diligence process. This process includes several steps: supplier registration and pre-screening, where all suppliers undergo a Sanctions & Business Ethics screening before contractual engagement; a self-assessment covering topics in Vestas' Supplier Code of Conduct, with only those scoring 70% or higher in all chapters proceeding to the next step; supplier creation; and on-site assessments, which may be performed by Vestas' teams or third parties for direct and indirect suppliers, respectively. We continuously monitor supplier performance and manage relationships through due diligence activities based on risk evaluation, including supplier scorecards, performance review meetings, and third-party sustainability audits. Additionally, as part of our performance monitoring, we send out the Safety and Sustainability Survey to suppliers, covering topics such as emissions reduction initiatives, renewable energy purchases and targets, and waste and resource reduction.

Climate change

(5.11.6.1) Environmental requirement

Select from:

Waste and resource reduction and material circularity

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Off-site third-party audit
- On-site third-party audit
- Supplier scorecard or rating
- Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

100%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

100%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

76-99%

(5.11.6.12) Comment

Vestas requires our suppliers, both existing and potential, to uphold the principles outlined in our Supplier Code of Conduct. To support and validate this expectation, we conduct a comprehensive onboarding and due diligence process. This process includes several steps: supplier registration and pre-screening, where all suppliers undergo a Sanctions & Business Ethics screening before contractual engagement; a self-assessment covering topics in Vestas' Supplier Code of Conduct, with only those scoring 70% or higher in all chapters proceeding to the next step; supplier creation; and on-site assessments, which may be performed by Vestas' teams or third parties for direct and indirect suppliers, respectively. We continuously monitor supplier performance and manage relationships through due diligence activities based on risk evaluation, including supplier scorecards, performance review meetings, and third-party sustainability audits. Additionally, as part of our performance monitoring, we send out the Safety and Sustainability Survey to suppliers, covering topics such as emissions reduction initiatives, renewable energy purchases and targets, and waste and resource reduction.

[Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

- Circular economy

(5.11.7.3) Type and details of engagement

Innovation and collaboration

- Collaborate with suppliers to develop reuse infrastructure and reuse models
- Run a campaign to encourage innovation to reduce environmental impacts on products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

- Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

- 1-25%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

- Less than 1%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

In February 2023, we introduced a groundbreaking solution that makes epoxy-infused wind turbine blades fully recyclable without altering their design or material composition. This innovation leverages newly discovered chemical technology from the Circular Economy for Thermosets Epoxy Composites (CETEC) initiative, in collaboration with Olin and Stena Recycling, Tier-1 suppliers of Vestas. Our solution can be applied to existing epoxy-infused blades, potentially eliminating the need for redesign or landfill disposal upon decommissioning. Vestas' solution is powered by a novel chemical process that breaks down epoxy resin into almost virgin-grade materials. This process was developed in partnership with CETEC project collaborators, including Aarhus University, the Danish Technological Institute (DTI), and Olin. This coalition of industry and academia is dedicated to advancing circular technology for wind turbine blades. Additionally, Vestas established a partnership

with ArcelorMittal to launch a low-emission steel offering that can reduce CO₂e emissions from heavy steel plates by 66 percent compared to steel produced via conventional steelmaking route. Utilising low-emission steel in the top two sections of an offshore tower would translate to approximately 25 percent reduction of emissions. For an entire onshore tower, the CO₂e reduction is at least 52 percent.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

- No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

- Unknown

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

- Emissions reduction

(5.11.7.3) Type and details of engagement

Financial incentives

- Feature environmental performance in supplier awards scheme

Information collection

- Collect climate transition plan information at least annually from suppliers
- Collect GHG emissions data at least annually from suppliers
- Collect targets information at least annually from suppliers
- Other information collection activity, please specify :Checking for commitment to set science-based targets, checking for having a certified environmental management system in place (ISO 14001), and checking waste reduction initiatives.

(5.11.7.4) Upstream value chain coverage

Select all that apply

- Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

- 26-50%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

- 26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Part of Vestas due diligence process is that we send out the Safety and Sustainability (S&S) survey to monitor our suppliers' performance. In the Safety and Sustainability questionnaire we collect GHG emissions data maturity, ask for their emission reduction targets, and climate transition plans, such as their commitment to setting Science-Based Targets Initiative (SBTi), UN Global Compact, and having certified environmental management systems. This is a quarterly evaluation tool that measures the maturity of our suppliers in areas encompassing health and safety, environmental responsibility, and social sustainability. In 2024, we distributed the Safety and Sustainability Survey to 201 key suppliers. We achieved an average score of 74 percent. By year-end, our engagement helped to improve sustainability performance for 89 suppliers who took part in the survey. Emission reduction initiatives of suppliers are also used as the basis for Vestas' annual supplier sustainability award, presented during the supplier forum. The award is presented to the supplier that has shown commitment to the renewable energy transition, has a clear reduction strategy for carbon emissions and waste, and is working on product circularity and/or other innovative solutions.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

- Yes, please specify the environmental requirement :Implementation of emissions reduction initiatives, purchasing of low-carbon or renewable energy, setting a low-carbon or renewable energy target, waste and resource reduction and material circularity

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

Upstream value chain transparency and human rights

(5.11.7.3) Type and details of engagement

Information collection

Other information collection activity, please specify :Collect data from identified suppliers regarding the use of conflict minerals in their products ensuring ethical sourcing and adherence to international standards

(5.11.7.4) Upstream value chain coverage

Select all that apply

Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

26-50%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Vestas has a Conflict Minerals Policy designed to identify, reduce, and ultimately eliminate the use of conflict minerals within our supply chain. The policy also aims to enhance transparency and support responsible and ethical sourcing practices. To implement this commitment, we have established a Conflict Minerals Program

(CMP), through which we assess suppliers considered in scope for conflict minerals reporting. In 2024, we successfully completed the annual cycle of the CMP using a third-party supply chain data management platform to support the collection and analysis of supplier data. The current campaign, our fifth, covers the 2024 to 2025 reporting period and is scheduled to conclude in May 2025. As part of this campaign, 104 suppliers were engaged, compared to 181 suppliers in the previous cycle, which ended in May 2024. All supplier responses are collected using the industry standard Conflict Minerals Reporting Template (CMRT). As of now, the response rate for the 2024 to 2025 campaign is 93 percent, representing a slight decrease from the 99 percent response rate achieved in the previous campaign.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

- No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

- Unknown

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

- Other, please specify :Alignment of sustainability strategy

(5.11.7.3) Type and details of engagement

Capacity building

- Other capacity building activity, please specify :Host a forum to communicate expectations and align sustainability strategy with suppliers.

Financial incentives

- Feature environmental performance in supplier awards scheme

(5.11.7.4) Upstream value chain coverage

Select all that apply

Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

51-75%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

51-75%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Every year Vestas hosts the Vestas Supplier Forum, where we engage our key suppliers, who collectively account for the majority of our scope 3 emissions. In 2024, in total 117 key suppliers came to Denmark (HQ) for the entire event. During the event, we share our expectations for the future development of the renewable energy industry. In 2024, the theme of the Supplier Forum was 'Strengthening Supply Chain Resilience for a Sustainable Future'. One of the key messages was 'Sustainability is the new digital arena', which conveys to suppliers that data transparency and accuracy are vital for success, both socially and environmentally. We also encouraged suppliers to collaborate with each other to elevate the industry's sustainability performance. Each year at the Forum, we present a sustainability award to a supplier who has shown commitment to the renewable energy transition, has a clear reduction strategy for carbon emissions and waste, and is working on product circularity and/or other innovative solutions.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

- Emissions reduction

(5.11.7.3) Type and details of engagement

Innovation and collaboration

- Collaborate with suppliers on innovations to reduce environmental impacts in products and services
- Collaborate with suppliers to develop reuse infrastructure and reuse models

(5.11.7.4) Upstream value chain coverage

Select all that apply

- Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

- 1-25%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

- Less than 1%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Vestas established a partnership with ArcelorMittal in 2023 to launch a low-emission steel offering that can reduce CO2e emissions from heavy steel plates by 66 percent compared to steel produced via the conventional steelmaking route. In 2024 Vestas have managed to sell low-emission steel to our customers e.g. on Nordlicht phases 1 and phase 2 equivalent. I total the two projects are accounting for 30,400 tons of CO2e avoided. Utilizing low-emission steel in the top two sections of an offshore tower would translate to approximately 25 percent reduction of emissions. For an entire onshore tower, the CO2e reduction is at least 52 percent.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

No, this engagement is unrelated to meeting an environmental requirement

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Unknown

[Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Innovation and collaboration

Collaborate with stakeholders on innovations to reduce environmental impacts in products and services

(5.11.9.3) % of stakeholder type engaged

Select from:

76-99%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

1-25%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Our sustainable product options are available to all customers, and we actively promote them with customer webinars, technical materials, and information campaigns. Once a customer has indicated further interest, we meet with them in designated technical sustainability workshops where we discuss the costs, technical risks, and opportunities for implementation on a customer's pipeline of wind projects.

(5.11.9.6) Effect of engagement and measures of success

We measure success by the adoption of low-emission alternatives into our customer's procurement strategies. For example, what percentage of a project will be made with low-emission steel, what percentage of our service fleet is running on hydrogen or methanol power, and how many of our customers' turbine blades will we reuse or recycle during a repowering project? The impact of these initiatives is consistent technical and commercial engagement with our customers on making wind farms more sustainable and further reducing the carbon intensity of wind energy. Altogether, our low-emissions offerings can reduce the carbon intensity of a project by around 45% on a lifecycle basis if fully implemented on a wind project.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

Other value chain stakeholder, please specify :Suppliers

(5.11.9.2) Type and details of engagement

Innovation and collaboration

Collaborate with stakeholders on innovations to reduce environmental impacts in products and services

(5.11.9.3) % of stakeholder type engaged

Select from:

1-25%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

1-25%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

We engage with suppliers of high emission materials to try and develop the availability of low emission alternatives. We also engage with vessel suppliers (CTVs) to ensure renewably fuelled vessels in our fleet, and with car companies to ensure our service vehicle fleet is powered by electricity.

(5.11.9.6) Effect of engagement and measures of success

We measure success by the adoption of low-emission alternatives into our customer's procurement strategies. For example, what percentage of a project will be made with low-emission steel, what percentage of our service fleet is running on hydrogen or methanol power, and how many of our customers' turbine blades will we reuse or recycle during a repowering project? The impact of these initiatives is consistent technical and commercial engagement with our customers on making wind farms more sustainable and further reducing the carbon intensity of wind energy. Altogether, our low-emissions offerings can reduce the carbon intensity of a project by around 45% on a lifecycle basis if fully implemented on a wind project.

[Add row]

(5.13) Has your organization already implemented any mutually beneficial environmental initiatives due to CDP Supply Chain member engagement?

	<p>Environmental initiatives implemented due to CDP Supply Chain member engagement</p>
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>

[Fixed row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

Climate change

(6.1.1) Consolidation approach used

Select from:

- Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

Vestas' environmental key figures encompass the Vestas Group in an operational control perspective (including owned and leased entities) ensuring a comprehensive and accurate statement of these figures. This approach applies to all environmental indicators that are reported for the accounting period, based on data registered locally in the Vestas reporting system, consolidated on Group level.

Plastics

(6.1.1) Consolidation approach used

Select from:

- Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

Vestas' environmental key figures encompass the Vestas Group in an operational control perspective (including owned and leased entities) ensuring a comprehensive and accurate statement of these figures. This approach applies to all environmental indicators that are reported for the accounting period, based on data registered locally in the Vestas reporting system, consolidated on Group level.

Biodiversity

(6.1.1) Consolidation approach used

Select from:

Operational control

(6.1.2) Provide the rationale for the choice of consolidation approach

Vestas' environmental key figures encompass the Vestas Group in an operational control perspective (including owned and leased entities) ensuring a comprehensive and accurate statement of these figures. This approach applies to all environmental indicators that are reported for the accounting period, based on data registered locally in the Vestas reporting system, consolidated on Group level.

[Fixed row]

C7. Environmental performance - Climate Change

(7.1) Is this your first year of reporting emissions data to CDP?

Select from:

No

(7.1.1) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

	Has there been a structural change?
	<i>Select all that apply</i> <input checked="" type="checkbox"/> No

[Fixed row]

(7.1.2) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

	Change(s) in methodology, boundary, and/or reporting year definition?
	<i>Select all that apply</i> <input checked="" type="checkbox"/> No

[Fixed row]

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

- The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- The Greenhouse Gas Protocol: Scope 2 Guidance
- The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard

(7.3) Describe your organization's approach to reporting Scope 2 emissions.

(7.3.1) Scope 2, location-based

Select from:

- We are reporting a Scope 2, location-based figure

(7.3.2) Scope 2, market-based

Select from:

- We are reporting a Scope 2, market-based figure

(7.3.3) Comment

Scope 2: Covers emissions released in connection with the consumption of purchased electricity and heat. Indirect market-based emissions of CO₂e from consumption of electricity are calculated using national grid emission factors published by the International Energy Agency (2024). Indirect CO₂e emissions from district heating are calculated using DEFRA (2024) emission factors.

[Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

65978

(7.5.3) Methodological details

Direct emission of CO2 is calculated on the basis of determined amounts of fuel for own transport and the direct consumption of oil and gas, with the usage of standard factors published by the UK Department for Environment, Food & Rural Affairs

Scope 2 (location-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

102982.0

(7.5.3) Methodological details

Indirect emission of CO2 from consumption of electricity outside Europe is calculated, with the usage of national grid emissions factors published by International Energy Agency. Indirect CO2 emission from consumption of electricity in Europe is calculated with residual mix emission factors from Association of Issuing Bodies. Indirect CO2 emission from district heating is calculated with the usage of emission factor from the UK Department for Environment, Food & Rural Affairs.

Scope 2 (market-based)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

48199.0

(7.5.3) Methodological details

Indirect emission of CO2 from consumption of electricity outside Europe is calculated, with the usage of national grid emissions factors published by International Energy Agency. Indirect CO2 emission from consumption of electricity in Europe is calculated with residual mix emission factors from Association of Issuing Bodies. Indirect CO2 emission from district heating is calculated with the usage of emission factor from the UK Department for Environment, Food & Rural Affairs.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

7033153

(7.5.3) Methodological details

Emissions are calculated using a hybrid approach based on spend data and supplier-specific data where available.

Scope 3 category 2: Capital goods

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

136979.0

(7.5.3) Methodological details

Emissions are calculated using a spend-based approach with emission factors from relevant databases

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

29172

(7.5.3) Methodological details

Emissions are calculated using emission factors for fuel production and transportation activities.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

484056.0

(7.5.3) Methodological details

Emissions are calculated using data from logistics providers and emission factors for transportation modes.

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

12138.0

(7.5.3) Methodological details

Emissions are calculated using waste management data and emission factors for disposal methods

Scope 3 category 6: Business travel

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

28580.0

(7.5.3) Methodological details

Emissions are calculated using travel data and emission factors for different travel modes

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

43639.0

(7.5.3) Methodological details

Emissions are calculated using employee survey data and emission factors for commuting methods.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

39247.0

(7.5.3) Methodological details

Emissions are calculated based on lease agreements and emission factors for building energy use.

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

12273.0

(7.5.3) Methodological details

Emissions are calculated using life cycle assessment data for product end-of-life scenarios.

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3 category 14: Franchises

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3 category 15: Investments

(7.5.1) Base year end

12/31/2019

(7.5.2) Base year emissions (metric tons CO2e)

7000.0

(7.5.3) Methodological details

Emissions are calculated using financial data and emission factors for the types of investments held.

Scope 3: Other (upstream)

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

Scope 3: Other (downstream)

(7.5.1) Base year end

12/30/2019

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

Not applicable. Vestas does not consider this category relevant.

[Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

103950

(7.6.3) Methodological details

Direct GHG emissions are calculated based on determined amounts of fuel for own transport and the direct consumption of fossil-based fuels (Eg Oil, gas and refrigerants) with the usage of standard factors published by the UK department for Environment, Food & Rural Affairs (DEFRA) (2024)

Past year 1

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

107691

(7.6.2) End date

12/30/2023

(7.6.3) Methodological details

Direct GHG emissions are calculated based on determined amounts of fuel for own transport and the direct consumption of fossil-based fuels (Eg Oil and gas) with the usage of standard factors published by the UK department for Business, Energy & Industrial strategy (BEIS) (2023)

[Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

48173

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

1145.95

(7.7.4) Methodological details

Methodology consistent with The Greenhouse Gas Protocol: Scope 2 Guidance. Scope 2 Market based- Covers emissions released in connection with the consumption of purchased electricity and heat. Indirect market-based GHG emissions from consumption of electricity are calculated using national grid emission factors published by the International Energy agency (2024). Indirect GHG emissions from district heating are calculated using DEFRA (2024) emission factors

Past year 1

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

44685.96

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

1262.97

(7.7.3) End date

12/30/2023

(7.7.4) Methodological details

Methodology consistent with The Greenhouse Gas Protocol: Scope 2 Guidance. Scope 2 Market based- Covers emissions released in connection with the consumption of purchased electricity and heat. Indirect market-based GHG emissions from consumption of electricity are calculated using national grid emission factors published by the International Energy agency (2023). Indirect GHG emissions from district heating are calculated using BEIS (2023) emission factors [Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

7019800

(7.8.3) Emissions calculation methodology

Select all that apply

Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 1 emissions include all upstream (i.e. cradle-to-gate) emissions from the production of products in the reporting year. In general, this includes:

- Extraction of raw materials
- Manufacturing, production, and processing
- Generation of electricity consumed by upstream activities
- Disposal/treatment of waste generated by upstream activities
- Transportation of materials and products

Capital goods

(7.8.1) Evaluation status

Select from:

Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

156600

(7.8.3) Emissions calculation methodology

Select all that apply

Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 2 includes all upstream (i.e., cradle-to-gate) emissions from the production of capital goods that are purchased in the reporting year. Capital goods are final products that have an extended lifetime and are used by the company to manufacture a product, provide a service, or sell, store, and deliver merchandise. In general, this includes machinery, buildings, facilities, and vehicles.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

27300

(7.8.3) Emissions calculation methodology

Select all that apply

Fuel-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 3 includes emissions related to the production of fuels and energy purchased in the reporting year. It does not include the combustion of fuels or electricity, since these are included in scope 1 & 2.

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

603400

(7.8.3) Emissions calculation methodology

Select all that apply

Fuel-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

87

(7.8.5) Please explain

Category 4 includes emissions from the transportation and distribution of products purchased in the reporting year in vehicles and facilities not owned or operated by the reporting company. Specifically, this includes:

- Transportation of products between a company's tier 1 suppliers and its own operations
- Transportation services purchased, including emissions from distribution centers

Waste generated in operations

(7.8.1) Evaluation status

Select from:

- Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

17200

(7.8.3) Emissions calculation methodology

Select all that apply

- Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 5 includes emissions from third-party disposal and treatment of waste that is generated in the reporting year. This category includes both solid waste and wastewater treatment. Waste treatment at own facilities is accounted for in scope 1 & 2 emissions. This category includes all future emissions that result from waste generated in the reporting year.

Business travel

(7.8.1) Evaluation status

Select from:

- Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

36100

(7.8.3) Emissions calculation methodology

Select all that apply

- Supplier-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Category 6 includes emissions from the transportation of employees for business-related activities in vehicles owned or operated by third parties, such as aircraft, trains, buses, and passenger cars. Note: emissions from transportation of company-vehicles are included in scope 1 & 2, while transportation of employees to and from work are accounted for in Category 7 for Employee commuting.

Employee commuting

(7.8.1) Evaluation status

Select from:

- Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

53800

(7.8.3) Emissions calculation methodology

Select all that apply

- Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 7 includes emissions from the transportation of employees between their homes and workplace, including travel by car, bus, rail and air.

Upstream leased assets

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

"Category 8 includes emissions from the operation of assets that are in the reporting year and not already included in scope 1 & 2 emissions reporting. This category is not relevant to Vestas. All facilities/equipment rented/leased from a third party are included in scope 1&2 emissions reporting."

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

Category 9 includes emissions from transportation of products in the reporting year between the reporting company's operations and the end consumer, if not paid for by the reporting company. This category is not applicable to Vestas. All purchased outbound transportation is excluded from category 9 and included in category 4 (Upstream transportation and distribution).

Processing of sold products

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

"Category 10 includes emissions from processing of sold intermediate products by third parties (e.g., manufacturers) subsequent to sale by the reporting company. Intermediate products are products that require further processing require further processing, transformation, or inclusion in another product before use (Source: GHG Protocol). This category is not material to Vestas. Vestas products need no further processing. Vestas does not sell intermediate products to our customers. Our products (wind turbines) are finished products. These finished products are ready for use by our customers and do not require further processing."

Use of sold products

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

Category 11 includes emissions from the use-phase of goods and services sold by the reporting company in the reporting year. This may include direct and indirect emissions, for example, the consumption of fuel or electricity. This category is not material to Vestas. Vestas products do not emit GHG during their use. Any components consumed during service are included in scope 3 category 1 and fuel consumed from service vehicle activity is included in scope 1 and 2.

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

71900

(7.8.3) Emissions calculation methodology

Select all that apply

Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 12 includes emissions from the waste disposal and treatment of products sold by the reporting company (in the reporting year) at the end of their life. This category includes the total expected end-of-life emissions from all products sold in the reporting year.

Downstream leased assets

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

Category 13 includes emissions from the operation of assets that are owned by the reporting company (acting as lessor) and leased to other entities in the reporting year. This category is not material to Vestas. Vestas does not have any leased assets.

Franchises

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

Category 14 includes emissions from the operation of franchises not included in scope 1 or scope 2. A franchise is a business operating under a license to sell or distribute another company's goods or services. This category is not material to Vestas. Vestas does not have any franchises.

Investments

(7.8.1) Evaluation status

Select from:

- Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

0

(7.8.3) Emissions calculation methodology

Select all that apply

- Investment-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Category 15 includes scope 3 emissions associated with the reporting company's investments in the reporting year. Vestas does not have operational control and does not need to report GHG emissions its Associates. Vestas' joint venture portfolio consists of Global Development projects which cover the phases prior to the construction of a wind farm. There are no operations on the site before the sale of the project, and hence no GHG emissions can be recorded. After the sale of the project, Vestas exits the project and hence has no operational control over it. In cases where Vestas' wind turbines are installed on site after the sale of the project, the GHG emissions are captured as part of usual manufacturing and construction processes at Vestas. Therefore, to avoid double counting, GHG emissions for joint ventures are not to be reported separately in category 15.

Other (upstream)

(7.8.1) Evaluation status

Select from:

- Not relevant, explanation provided

(7.8.5) Please explain

Not relevant

Other (downstream)

(7.8.1) Evaluation status

Select from:

Not relevant, explanation provided

(7.8.5) Please explain

Not relevant

[Fixed row]

(7.8.1) Disclose or restate your Scope 3 emissions data for previous years.

Past year 1

(7.8.1.1) End date

12/31/2023

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

6206700

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

138000

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

27600

(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)

1151900

(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e)

22200

(7.8.1.7) Scope 3: Business travel (metric tons CO2e)

31700

(7.8.1.8) Scope 3: Employee commuting (metric tons CO2e)

65100

(7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e)

0

(7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e)

0

(7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e)

0

(7.8.1.12) Scope 3: Use of sold products (metric tons CO2e)

0

(7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e)

12700

(7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e)

0

(7.8.1.15) Scope 3: Franchises (metric tons CO2e)

0

(7.8.1.16) Scope 3: Investments (metric tons CO2e)

0

(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)

0

(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)

0

(7.8.1.19) Comment

No comment

[Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	<i>Select from:</i> <input checked="" type="checkbox"/> Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	<i>Select from:</i>

	Verification/assurance status
	<input checked="" type="checkbox"/> Third-party verification or assurance process in place
Scope 3	<p>Select from:</p> <input checked="" type="checkbox"/> Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

Annual process

(7.9.1.2) Status in the current reporting year

Select from:

Complete

(7.9.1.3) Type of verification or assurance

Select from:

Limited assurance

(7.9.1.4) Attach the statement

(7.9.1.5) Page/section reference

204

(7.9.1.6) Relevant standard

Select from:

ISAE3000

(7.9.1.7) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

Scope 2 market-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

Limited assurance

(7.9.2.5) Attach the statement

Vestas AR 2024.pdf

(7.9.2.6) Page/ section reference

204

(7.9.2.7) Relevant standard

Select from:

ISAE3000

(7.9.2.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

Scope 3: Franchises

Scope 3: Use of sold products

- Scope 3: Investments
- Scope 3: Capital goods
- Scope 3: Business travel
- Scope 3: Employee commuting
- Scope 3: Waste generated in operations
- Scope 3: End-of-life treatment of sold products
- Scope 3: Upstream transportation and distribution
- Scope 3: Downstream transportation and distribution
- Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)
- Scope 3: Upstream leased assets
- Scope 3: Downstream leased assets
- Scope 3: Processing of sold products
- Scope 3: Purchased goods and services

(7.9.3.2) Verification or assurance cycle in place

Select from:

- Annual process

(7.9.3.3) Status in the current reporting year

Select from:

- Complete

(7.9.3.4) Type of verification or assurance

Select from:

- Limited assurance

(7.9.3.5) Attach the statement

Vestas AR 2024.pdf

(7.9.3.6) Page/section reference

204

(7.9.3.7) Relevant standard

Select from:

ISAE3000

(7.9.3.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

Decreased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Mergers

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Change in output

(7.10.1.1) Change in emissions (metric tons CO2e)

3858

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

4

(7.10.1.4) Please explain calculation

*Difference last year and present year= 108954-105096=3858 Percentage change= 3858/108954*100= 3.54%*

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Change in physical operating conditions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

- No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

NA

[Fixed row]

(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Select from:

- Market-based

(7.11) How do your total Scope 3 emissions for the reporting year compare to those of the previous reporting year?

Select from:

- Increased

(7.11.1) For each Scope 3 category calculated in 7.8, specify how your emissions compare to the previous year and identify the reason for any change.

Purchased goods and services

(7.11.1.1) Direction of change

Select from:

Increased

(7.11.1.2) Primary reason for change

Select from:

Change in output

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

813000

(7.11.1.4) % change in emissions in this category

13.1

(7.11.1.5) Please explain

Vestas has increased business growth of wind turbine produced & shipped in 2024 compared to 2023, hence overall increased total scope 3 emissions. However, on a Scope 3 CO2 intensity basis (whereby Vestas has a committed and approved science-based target) measured as kg CO2e per MWh of electricity delivered for products produced&shipped in 2024 reporting year, then total scope 3 emissions intensity have reduced overall by 10.2%. This is due to reduced scope 3 CO2 emissions and improved product performance (higher/more efficient MWh generation).

Capital goods

(7.11.1.1) Direction of change

Select from:

Increased

(7.11.1.2) Primary reason for change

Select from:

Change in output

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

18600

(7.11.1.4) % change in emissions in this category

13.5

(7.11.1.5) Please explain

Vestas has increased business growth of wind turbine produced & shipped in 2024 compared to 2023, hence overall increased total scope 3 emissions. However, on a Scope 3 CO2 intensity basis (whereby Vestas has a committed and approved science-based target) measured as kg CO2e per MWh of electricity delivered for products produced&shipped in 2024 reporting year, then total scope 3 emissions intensity have reduced overall by 10.2%. This is due to reduced scope 3 CO2 emissions and improved product performance (higher/more efficient MWh generation).

Fuel and energy-related activities (not included in Scopes 1 or 2)

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

Change in renewable energy generation

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

300

(7.11.1.4) % change in emissions in this category

1.1

(7.11.1.5) Please explain

Vestas has increased business growth of wind turbine produced & shipped in 2024 compared to 2023, hence overall increased total scope 3 emissions. However, on a Scope 3 CO2 intensity basis (whereby Vestas has a committed and approved science-based target) measured as kg CO2e per MWh of electricity delivered for products produced&shipped in 2024 reporting year, then total scope 3 emissions intensity have reduced overall by 10.2%. This is due to reduced scope 3 CO2 emissions and improved product performance (higher/more efficient MWh generation).

Upstream transportation and distribution

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

Change in methodology

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

548500

(7.11.1.4) % change in emissions in this category

47.6

(7.11.1.5) Please explain

Accountancy updates and corrections made in 2024.

Waste generated in operations

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

- Other emissions reduction activities

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

4900

(7.11.1.4) % change in emissions in this category

22.3

(7.11.1.5) Please explain

Higher recycling rates and waste minimization in 2024 compared to 2023 have led to reductions overall.

Business travel

(7.11.1.1) Direction of change

Select from:

- Increased

(7.11.1.2) Primary reason for change

Select from:

- Change in output

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

4500

(7.11.1.4) % change in emissions in this category

(7.11.1.5) Please explain

Vestas has increased business growth of wind turbine produced & shipped in 2024 compared to 2023, hence overall increased total scope 3 emissions. However, on a Scope 3 CO2 intensity basis (whereby Vestas has a committed and approved science-based target) measured as kg CO2e per MWh of electricity delivered for products produced & shipped in 2024 reporting year, then total scope 3 emissions intensity have reduced overall by 10.2%. This is due to reduced scope 3 CO2 emissions and improved product performance (higher/more efficient MWh generation).

Employee commuting

(7.11.1.1) Direction of change

Select from:

Decreased

(7.11.1.2) Primary reason for change

Select from:

Change in output

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

11300

(7.11.1.4) % change in emissions in this category

17.3

(7.11.1.5) Please explain

Overall there has been a reduction due to adjustments in calculation method to better reflect regional differences in employee commuting

End-of-life treatment of sold products

(7.11.1.1) Direction of change

Select from:

Increased

(7.11.1.2) Primary reason for change

Select from:

Change in methodology

(7.11.1.3) Change in emissions in this category (metric tons CO2e)

59300

(7.11.1.4) % change in emissions in this category

468

(7.11.1.5) Please explain

Due to feedback from external auditors of 2024 scope 3 reporting, the GHG emissions from end-of-life (EoL) transport (56500 tonnes CO2e) has moved from Category 9 to Scope 3 to Category 12 scope 3.

Investments

(7.11.1.1) Direction of change

Select from:

No change

(7.11.1.5) Please explain

*Remain zero GHG emissions according to GHG boundary rules.
[Fixed row]*

(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?

Select from:

Yes

(7.12.1) Provide the emissions from biogenic carbon relevant to your organization in metric tons CO2.

(7.12.1.1) CO2 emissions from biogenic carbon (metric tons CO2)

18572

(7.12.1.2) Comment

Emissions of biogenic Co2 are accounted for separately from the gross scope 1, 2 and 3 GHG baseline. Direct Scope 1 & 2 biogenic GHG emissions CO2, N2O and CH4 gases are determined based on amounts of biogenic fuel for transport and the direct consumption of biogenic based flues with the usage of standard factors (DEFRA 2024). Scope 3 biogenic emissions are determined according to other accounting principles described and applying where relevant biogenic CO2 factors derived from GaBi (2024) and DEFRA (2024)

[Fixed row]

(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?

Select from:

No

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

Argentina

(7.16.1) Scope 1 emissions (metric tons CO2e)

820.953

(7.16.2) Scope 2, location-based (metric tons CO2e)

33.54

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Australia

(7.16.1) Scope 1 emissions (metric tons CO2e)

2154.75

(7.16.2) Scope 2, location-based (metric tons CO2e)

84.15

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Austria

(7.16.1) Scope 1 emissions (metric tons CO2e)

473.07

(7.16.2) Scope 2, location-based (metric tons CO2e)

18.74

(7.16.3) Scope 2, market-based (metric tons CO2e)

4.4

Belgium

(7.16.1) Scope 1 emissions (metric tons CO2e)

9885.2

(7.16.2) Scope 2, location-based (metric tons CO2e)

21.43

(7.16.3) Scope 2, market-based (metric tons CO2e)

6.84

Brazil

(7.16.1) Scope 1 emissions (metric tons CO2e)

1074.62

(7.16.2) Scope 2, location-based (metric tons CO2e)

90.62

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Bulgaria

(7.16.1) Scope 1 emissions (metric tons CO2e)

106.3

(7.16.2) Scope 2, location-based (metric tons CO2e)

38.03

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Canada

(7.16.1) Scope 1 emissions (metric tons CO2e)

1790.03

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Chile

(7.16.1) Scope 1 emissions (metric tons CO2e)

595.5

(7.16.2) Scope 2, location-based (metric tons CO2e)

9.11

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

China

(7.16.1) Scope 1 emissions (metric tons CO2e)

1114.43

(7.16.2) Scope 2, location-based (metric tons CO2e)

6871.99

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Denmark

(7.16.1) Scope 1 emissions (metric tons CO2e)

2261.27

(7.16.2) Scope 2, location-based (metric tons CO2e)

9405.3

(7.16.3) Scope 2, market-based (metric tons CO2e)

1030.14

Egypt

(7.16.1) Scope 1 emissions (metric tons CO2e)

137.69

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Finland

(7.16.1) Scope 1 emissions (metric tons CO2e)

824.32

(7.16.2) Scope 2, location-based (metric tons CO2e)

6.86

(7.16.3) Scope 2, market-based (metric tons CO2e)

6.86

France

(7.16.1) Scope 1 emissions (metric tons CO2e)

2301.76

(7.16.2) Scope 2, location-based (metric tons CO2e)

64.81

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Germany

(7.16.1) Scope 1 emissions (metric tons CO2e)

15882.06

(7.16.2) Scope 2, location-based (metric tons CO2e)

2248.66

(7.16.3) Scope 2, market-based (metric tons CO2e)

70.14

Greece

(7.16.1) Scope 1 emissions (metric tons CO2e)

734.41

(7.16.2) Scope 2, location-based (metric tons CO2e)

64.37

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

India

(7.16.1) Scope 1 emissions (metric tons CO2e)

1025.21

(7.16.2) Scope 2, location-based (metric tons CO2e)

4757.66

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Ireland

(7.16.1) Scope 1 emissions (metric tons CO2e)

313.04

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Italy**(7.16.1) Scope 1 emissions (metric tons CO2e)**

1669.14

(7.16.2) Scope 2, location-based (metric tons CO2e)

12426.03

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Japan**(7.16.1) Scope 1 emissions (metric tons CO2e)**

223.89

(7.16.2) Scope 2, location-based (metric tons CO2e)

26.24

(7.16.3) Scope 2, market-based (metric tons CO2e)

26.24

Jordan

(7.16.1) Scope 1 emissions (metric tons CO2e)

106.69

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Kenya

(7.16.1) Scope 1 emissions (metric tons CO2e)

12.63

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Mexico

(7.16.1) Scope 1 emissions (metric tons CO2e)

211.01

(7.16.2) Scope 2, location-based (metric tons CO2e)

82.49

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Mongolia

(7.16.1) Scope 1 emissions (metric tons CO2e)

41.98

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Morocco

(7.16.1) Scope 1 emissions (metric tons CO2e)

5.42

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Netherlands

(7.16.1) Scope 1 emissions (metric tons CO2e)

1699.95

(7.16.2) Scope 2, location-based (metric tons CO2e)

121.44

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

New Zealand

(7.16.1) Scope 1 emissions (metric tons CO2e)

109.07

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Norway

(7.16.1) Scope 1 emissions (metric tons CO2e)

161.6

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Peru

(7.16.1) Scope 1 emissions (metric tons CO2e)

12.78

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Philippines

(7.16.1) Scope 1 emissions (metric tons CO2e)

36.57

(7.16.2) Scope 2, location-based (metric tons CO2e)

245.25

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Poland

(7.16.1) Scope 1 emissions (metric tons CO2e)

1561.9

(7.16.2) Scope 2, location-based (metric tons CO2e)

90.75

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Portugal

(7.16.1) Scope 1 emissions (metric tons CO2e)

414.13

(7.16.2) Scope 2, location-based (metric tons CO2e)

168.68

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Republic of Korea

(7.16.1) Scope 1 emissions (metric tons CO2e)

31.37

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Romania

(7.16.1) Scope 1 emissions (metric tons CO2e)

1228.02

(7.16.2) Scope 2, location-based (metric tons CO2e)

82.09

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Saudi Arabia

(7.16.1) Scope 1 emissions (metric tons CO2e)

288.3

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Senegal

(7.16.1) Scope 1 emissions (metric tons CO2e)

94

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

South Africa

(7.16.1) Scope 1 emissions (metric tons CO2e)

89.41

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Spain

(7.16.1) Scope 1 emissions (metric tons CO2e)

2403.06

(7.16.2) Scope 2, location-based (metric tons CO2e)

2718.59

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Sweden

(7.16.1) Scope 1 emissions (metric tons CO2e)

449.76

(7.16.2) Scope 2, location-based (metric tons CO2e)

43.23

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Taiwan, China

(7.16.1) Scope 1 emissions (metric tons CO2e)

1045.69

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Thailand

(7.16.1) Scope 1 emissions (metric tons CO2e)

55.59

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Turkey

(7.16.1) Scope 1 emissions (metric tons CO2e)

691.61

(7.16.2) Scope 2, location-based (metric tons CO2e)

73.34

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

United Kingdom of Great Britain and Northern Ireland

(7.16.1) Scope 1 emissions (metric tons CO2e)

24725.11

(7.16.2) Scope 2, location-based (metric tons CO2e)

2671.5

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

United States of America

(7.16.1) Scope 1 emissions (metric tons CO2e)

24143.12

(7.16.2) Scope 2, location-based (metric tons CO2e)

10426.01

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Uruguay

(7.16.1) Scope 1 emissions (metric tons CO2e)

298.55

(7.16.2) Scope 2, location-based (metric tons CO2e)

1.33

(7.16.3) Scope 2, market-based (metric tons CO2e)

1.33

Viet Nam

(7.16.1) Scope 1 emissions (metric tons CO2e)

228

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

[Fixed row]

(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

Select all that apply

- By business division
- By facility

(7.17.1) Break down your total gross global Scope 1 emissions by business division.

	Business division	Scope 1 emissions (metric ton CO2e)
Row 1	LATAM	3040.4
Row 2	AME	26054.64
Row 4	MED	9148.45
Row 9	NCE	59600.63
Row 10	APAC	6106

[Add row]

(7.17.2) Break down your total gross global Scope 1 emissions by business facility.

Row 1

(7.17.2.1) Facility

AME Canada

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1790.03

(7.17.2.3) Latitude

56.130367

(7.17.2.4) Longitude

-106.346771

Row 3

(7.17.2.1) Facility

Warehouse NCE Randers

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2.1

(7.17.2.3) Latitude

56.425408

(7.17.2.4) Longitude

10.045728

Row 4

(7.17.2.1) Facility

MED Kenya

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

12.63

(7.17.2.3) Latitude

3.487274

(7.17.2.4) Longitude

35.354224

Row 6

(7.17.2.1) Facility

OFS UK Construction

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

50.701

(7.17.2.4) Longitude

-1.291

Row 7

(7.17.2.1) Facility

Assembly Tianjin

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

515.38

(7.17.2.3) Latitude

39.252134

(7.17.2.4) Longitude

117.161098

Row 8

(7.17.2.1) Facility

Assembly Brighton

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

761.06

(7.17.2.3) Latitude

39.977154

(7.17.2.4) Longitude

-104.746774

Row 10

(7.17.2.1) Facility

APAC Mongolia

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

41.98

(7.17.2.3) Latitude

43.5708

(7.17.2.4) Longitude

89.962

Row 12

(7.17.2.1) Facility

APAC Taiwan

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

25.085755

(7.17.2.4) Longitude

121.561474

Row 13

(7.17.2.1) Facility

LATAM Uruguay

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

298.55

(7.17.2.3) Latitude

32.5228

(7.17.2.4) Longitude

55.7658

Row 14

(7.17.2.1) Facility

NCE Sweden

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

449.76

(7.17.2.3) Latitude

55.548932

(7.17.2.4) Longitude

12.988119

Row 15

(7.17.2.1) Facility

VPS Denmark

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

56.196363

(7.17.2.4) Longitude

10.177488

Row 17

(7.17.2.1) Facility

OFS Germany Construction

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

5258.99

(7.17.2.3) Latitude

53.597

(7.17.2.4) Longitude

9.976

Row 18

(7.17.2.1) Facility

NCE Poland

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1561.9

(7.17.2.3) Latitude

53.429035

(7.17.2.4) Longitude

14.556745

Row 19

(7.17.2.1) Facility

OFS Germany Service

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

4396.73

(7.17.2.3) Latitude

53.597

(7.17.2.4) Longitude

9.976

Row 20

(7.17.2.1) Facility

APAC China

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

266.05

(7.17.2.3) Latitude

39.920885

(7.17.2.4) Longitude

116.333599

Row 21

(7.17.2.1) Facility

MED Portugal

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

393.46

(7.17.2.3) Latitude

40.04634

(7.17.2.4) Longitude

-7.950804

Row 22

(7.17.2.1) Facility

Blades Windsor

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2751.55

(7.17.2.3) Latitude

40.461449

(7.17.2.4) Longitude

-104.848091

Row 24

(7.17.2.1) Facility

APAC New Zealand

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

109.07

(7.17.2.3) Latitude

-40.357419

(7.17.2.4) Longitude

175.611475

Row 25

(7.17.2.1) Facility

Blades Taranto

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

396.48

(7.17.2.3) Latitude

40.456833

(7.17.2.4) Longitude

17.258516

Row 27

(7.17.2.1) Facility

NCE Germany

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

5874.15

(7.17.2.3) Latitude

53.597689

(7.17.2.4) Longitude

9.976442

Row 28

(7.17.2.1) Facility

Group Staff Denmark

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

836.89

(7.17.2.3) Latitude

56.196363

(7.17.2.4) Longitude

10.177488

Row 29

(7.17.2.1) Facility

LATAM Chile

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

595.5

(7.17.2.3) Latitude

-30.20736

(7.17.2.4) Longitude

-71.639169

Row 30

(7.17.2.1) Facility

LATAM Peru

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

12.78

(7.17.2.3) Latitude

-9.468801

(7.17.2.4) Longitude

-77.265701

Row 31

(7.17.2.1) Facility

Blades Daimiel

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

282.24

(7.17.2.3) Latitude

39.069505

(7.17.2.4) Longitude

-3.617359

Row 32

(7.17.2.1) Facility

OFS Belgium Service

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

9885.2

(7.17.2.3) Latitude

50.5039

(7.17.2.4) Longitude

4.4699

Row 33

(7.17.2.1) Facility

OFS Netherlands Service

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1061.98

(7.17.2.3) Latitude

51.953

(7.17.2.4) Longitude

5.873

Row 34

(7.17.2.1) Facility

MED Spain

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2120.82

(7.17.2.3) Latitude

40.505078

(7.17.2.4) Longitude

-3.639038

Row 35

(7.17.2.1) Facility

NCE Denmark

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

595.99

(7.17.2.3) Latitude

56.091894

(7.17.2.4) Longitude

8.642899

Row 36

(7.17.2.1) Facility

LATAM Argentina

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

820.95

(7.17.2.3) Latitude

38.4161

(7.17.2.4) Longitude

63.6167

Row 38

(7.17.2.1) Facility

Blades Fawley

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

841.44

(7.17.2.3) Latitude

50.827

(7.17.2.4) Longitude

-1.35

Row 39

(7.17.2.1) Facility

MED Morocco

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

5.42

(7.17.2.3) Latitude

31.7917

(7.17.2.4) Longitude

7.0926

Row 40

(7.17.2.1) Facility

NCE Austria

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

473.07

(7.17.2.3) Latitude

48.213241

(7.17.2.4) Longitude

16.417216

Row 41

(7.17.2.1) Facility

APAC Japan

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

223.89

(7.17.2.3) Latitude

35.620504

(7.17.2.4) Longitude

139.739731

Row 42

(7.17.2.1) Facility

MED Bulgaria

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

106.3

(7.17.2.3) Latitude

43.219576

(7.17.2.4) Longitude

27.915707

Row 43

(7.17.2.1) Facility

Assembly Ringkøbing

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

359.42

(7.17.2.3) Latitude

56.089233

(7.17.2.4) Longitude

8.2718

Row 44

(7.17.2.1) Facility

Assembly Lindø

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

58.12

(7.17.2.3) Latitude

55.413

(7.17.2.4) Longitude

10.403

Row 45

(7.17.2.1) Facility

APAC India

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

897.27

(7.17.2.3) Latitude

13.05939

(7.17.2.4) Longitude

80.24567

Row 46

(7.17.2.1) Facility

MED Saudi Arabia

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

288.3

(7.17.2.3) Latitude

24.619

(7.17.2.4) Longitude

46.619

Row 47

(7.17.2.1) Facility

Assembly Chennai

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

115.65

(7.17.2.3) Latitude

13.06397

(7.17.2.4) Longitude

80.24311

Row 48

(7.17.2.1) Facility

Assembly Fortaleza

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

116.72

(7.17.2.3) Latitude

3.7327

(7.17.2.4) Longitude

38.527

Row 49

(7.17.2.1) Facility

NCE Ireland

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

313.04

(7.17.2.3) Latitude

53.35842

(7.17.2.4) Longitude

-6.241424

Row 50

(7.17.2.1) Facility

APAC Philippines

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

36.57

(7.17.2.3) Latitude

14.560725

(7.17.2.4) Longitude

121.016469

Row 51

(7.17.2.1) Facility

APAC Thailand

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

55.59

(7.17.2.3) Latitude

5.7743

(7.17.2.4) Longitude

97.968

Row 52

(7.17.2.1) Facility

Generators Travemünde

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

8.5

(7.17.2.3) Latitude

53.934893

(7.17.2.4) Longitude

10.845711

Row 53

(7.17.2.1) Facility

NCE Norway

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

161.6

(7.17.2.3) Latitude

59.90596

(7.17.2.4) Longitude

10.71431

Row 54

(7.17.2.1) Facility

MED France

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2301.76

(7.17.2.3) Latitude

48.175431

(7.17.2.4) Longitude

-2.754229

Row 55

(7.17.2.1) Facility

NCE Netherlands

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

637.97

(7.17.2.3) Latitude

51.953244

(7.17.2.4) Longitude

5.873535

Row 56

(7.17.2.1) Facility

Blades Nakskov

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

203.2

(7.17.2.3) Latitude

54.834

(7.17.2.4) Longitude

11.14

Row 57

(7.17.2.1) Facility

VPS Portugal

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

20.67

(7.17.2.3) Latitude

40.04634

(7.17.2.4) Longitude

-7.950804

Row 58

(7.17.2.1) Facility

LATAM Brazil

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

957.9

(7.17.2.3) Latitude

-14.242916

(7.17.2.4) Longitude

-51.412289

Row 59

(7.17.2.1) Facility

Blades Tianjin

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

213.97

(7.17.2.3) Latitude

39.252134

(7.17.2.4) Longitude

117.161098

Row 60

(7.17.2.1) Facility

VPS India

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

12.28

(7.17.2.3) Latitude

12.86138

(7.17.2.4) Longitude

80.226668

Row 61

(7.17.2.1) Facility

MED South Africa

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

89.1

(7.17.2.3) Latitude

-28.786638

(7.17.2.4) Longitude

24.753048

Row 62

(7.17.2.1) Facility

VPS United Kingdom

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

488.35

(7.17.2.3) Latitude

50.7001

(7.17.2.4) Longitude

-1.295939

Row 64

(7.17.2.1) Facility

MED Italy

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1272.66

(7.17.2.3) Latitude

40.45976

(7.17.2.4) Longitude

17.38497

Row 65

(7.17.2.1) Facility

APAC Vietnam

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

228

(7.17.2.3) Latitude

14.0583

(7.17.2.4) Longitude

108.277

Row 66

(7.17.2.1) Facility

MED Greece

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

734.41

(7.17.2.3) Latitude

38.032835

(7.17.2.4) Longitude

23.81424

Row 67

(7.17.2.1) Facility

LATAM Mexico

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

211.01

(7.17.2.3) Latitude

19.422447

(7.17.2.4) Longitude

-99.209758

Row 68

(7.17.2.1) Facility

Tooling Brighton

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

856.24

(7.17.2.3) Latitude

39.977154

(7.17.2.4) Longitude

-104.746774

Row 69

(7.17.2.1) Facility

Philippines

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

0

(7.17.2.3) Latitude

6.7525

(7.17.2.4) Longitude

124.801

Row 70

(7.17.2.1) Facility

NCE United Kingdom

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

698.87

(7.17.2.3) Latitude

53.424599

(7.17.2.4) Longitude

-2.52208

Row 71

(7.17.2.1) Facility

APAC Australia

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

2154.75

(7.17.2.3) Latitude

-37.828819

(7.17.2.4) Longitude

144.971207

Row 72

(7.17.2.1) Facility

MED Romania

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

1228.02

(7.17.2.3) Latitude

44.429997

(7.17.2.4) Longitude

26.12921

Row 73

(7.17.2.1) Facility

NCE Finland

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

824.32

(7.17.2.3) Latitude

64.198342

(7.17.2.4) Longitude

26.28978

Row 74

(7.17.2.1) Facility

OFS UK Service

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

21980.02

(7.17.2.3) Latitude

50.701

(7.17.2.4) Longitude

-1.291

Row 75

(7.17.2.1) Facility

Manufacturing HQ

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

75.66

(7.17.2.3) Latitude

56.196363

(7.17.2.4) Longitude

10.177488

Row 76

(7.17.2.1) Facility

AME USA

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

19774.27

(7.17.2.3) Latitude

45.508704

(7.17.2.4) Longitude

-122.560581

Row 77

(7.17.2.1) Facility

Blades Lem

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

63.04

(7.17.2.3) Latitude

56.022361

(7.17.2.4) Longitude

8.387852

Row 78

(7.17.2.1) Facility

Blades Isle of Wight

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

716.44

(7.17.2.3) Latitude

50.701

(7.17.2.4) Longitude

-1.291

Row 79

(7.17.2.1) Facility

MED Turkey

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

691.61

(7.17.2.3) Latitude

41.019341

(7.17.2.4) Longitude

28.95294

Row 80

(7.17.2.1) Facility

MED Senegal

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

94

(7.17.2.3) Latitude

14.4974

(7.17.2.4) Longitude

14.4524

Row 81

(7.17.2.1) Facility

Generators Tianjin

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

119.03

(7.17.2.3) Latitude

39.252134

(7.17.2.4) Longitude

117.161098

Row 82

(7.17.2.1) Facility

MED Jordan

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

106.69

(7.17.2.3) Latitude

31.260381

(7.17.2.4) Longitude

34.878476

Row 83

(7.17.2.1) Facility

Repair Generator Lübeck

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

343.68

(7.17.2.3) Latitude

53.888326

(7.17.2.4) Longitude

10.705765

Row 85

(7.17.2.1) Facility

APAC South Korea

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

31.37

(7.17.2.3) Latitude

37.557121

(7.17.2.4) Longitude

126.977375

Row 86

(7.17.2.1) Facility

MED Egypt

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

137.69

(7.17.2.3) Latitude

26.820553

(7.17.2.4) Longitude

30.802498

Row 87

(7.17.2.1) Facility

Tooling Denmark

(7.17.2.2) Scope 1 emissions (metric tons CO2e)

34.28

(7.17.2.3) Latitude

56.196363

(7.17.2.4) Longitude

10.177488

[Add row]

(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

Select all that apply

- By business division
- By facility

(7.20.1) Break down your total gross global Scope 2 emissions by business division.

	Business division	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Row 1	MED	15515.83	0

	Business division	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Row 4	APAC	11985.29	26.24
Row 5	AME	10426.01	0
Row 6	LATAM	217.08	1.33
Row 8	NCE	10028.51	1118.38

[Add row]

(7.20.2) Break down your total gross global Scope 2 emissions by business facility.

Row 1

(7.20.2.1) Facility

AME Canada

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 2

(7.20.2.1) Facility

LATAM Mexico

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

82.49

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 3

(7.20.2.1) Facility

MED France

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

64.81

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 4

(7.20.2.1) Facility

NCE Netherlands

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

94.15

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 5

(7.20.2.1) Facility

NCE Denmark

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

964.96

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

264.61

Row 6

(7.20.2.1) Facility

Blades Isle of Wight

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1559.42

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 7

(7.20.2.1) Facility

APAC China

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

331.41

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 8

(7.20.2.1) Facility

NCE Germany

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

696.95

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

69.9

Row 9

(7.20.2.1) Facility

Assembly Lindø

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

769.16

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

302.74

Row 11

(7.20.2.1) Facility

MED Spain

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

124.41

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 13

(7.20.2.1) Facility

Blades Nakskov

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2712.09

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 14

(7.20.2.1) Facility

Blades Daimiel

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2594.18

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 15

(7.20.2.1) Facility

APAC Australia

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

84.15

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 16

(7.20.2.1) Facility

NCE Sweden

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

43.23

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 17

(7.20.2.1) Facility

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

3438.65

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 18

(7.20.2.1) Facility

MED Romania

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

82.09

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 19

(7.20.2.1) Facility

LATAM Chile

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

9.11

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 20

(7.20.2.1) Facility

Assembly Brighton

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1299.17

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 21

(7.20.2.1) Facility

MED Bulgaria

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

38.03

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 23

(7.20.2.1) Facility

Philippines

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

245.25

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 24**(7.20.2.1) Facility**

Repair Generator Lübeck

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

693.16

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 25**(7.20.2.1) Facility**

MED Turkey

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

73.34

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 26

(7.20.2.1) Facility

Warehouse NCE Randers

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

183.23

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.43

Row 27

(7.20.2.1) Facility

OFS Netherlands Service

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

27.29

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 28

(7.20.2.1) Facility

Blades Lem

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2245.27

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

225.55

Row 29

(7.20.2.1) Facility

Assembly Fortaleza

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

63.24

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 30

(7.20.2.1) Facility

APAC Japan

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

26.24

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

26.24

Row 31

(7.20.2.1) Facility

OFS Belgium Service

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

21.43

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

6.84

Row 32

(7.20.2.1) Facility

VPS United Kingdom

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

573.58

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 33

(7.20.2.1) Facility

LATAM Argentina

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

33.54

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 35

(7.20.2.1) Facility

MED Italy

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

90.25

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 36

(7.20.2.1) Facility

Generators Travemünde

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

858.31

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 37

(7.20.2.1) Facility

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

90.68

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 38

(7.20.2.1) Facility

VPS Portugal

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

124.27

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 39

(7.20.2.1) Facility

Blades Tianjin

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2610.35

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 40

(7.20.2.1) Facility

NCE Austria

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

18.74

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

4.4

Row 41

(7.20.2.1) Facility

APAC Taiwan

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 42

(7.20.2.1) Facility

Assembly Tianjin

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1227.65

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 44

(7.20.2.1) Facility

APAC Vietnam

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 45

(7.20.2.1) Facility

Blades Taranto

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

12335.79

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 46

(7.20.2.1) Facility

AME USA

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

503.58

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 47

(7.20.2.1) Facility

VPS India

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

484.67

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 48

(7.20.2.1) Facility

MED Portugal

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

44.41

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 49

(7.20.2.1) Facility

OFS UK Construction

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 50

(7.20.2.1) Facility

Generators Tianjin

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2702.58

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 51

(7.20.2.1) Facility

Blades Windsor

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

6165.44

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 52

(7.20.2.1) Facility

NCE Finland

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

6.86

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

6.86

Row 53

(7.20.2.1) Facility

Group Staff Denmark

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

941.33

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

198.75

Row 54

(7.20.2.1) Facility

NCE Poland

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

90.75

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 55

(7.20.2.1) Facility

VPS Denmark

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

872.52

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 56

(7.20.2.1) Facility

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

834.34

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 58

(7.20.2.1) Facility

Tooling Brighton

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

2457.82

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 59

(7.20.2.1) Facility

LATAM Uruguay

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

1.33

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

1.33

Row 60

(7.20.2.1) Facility

Assembly Ringkøbing

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

677.52

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

37.05

Row 61

(7.20.2.1) Facility

MED Greece

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

64.37

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 62

(7.20.2.1) Facility

MED Morocco

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 64

(7.20.2.1) Facility

OFS Denmark service

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 65

(7.20.2.1) Facility

OFS Germany Service

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 66

(7.20.2.1) Facility

OFS Germany Construction

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0.24

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0.24

Row 67

(7.20.2.1) Facility

OFS UK Service

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 68

(7.20.2.1) Facility

APAC Mongolia

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 69

(7.20.2.1) Facility

APAC New Zealand

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 70

(7.20.2.1) Facility

APAC Philippines

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 71

(7.20.2.1) Facility

APAC South Korea

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 72

(7.20.2.1) Facility

APAC Thailand

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

0

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 73

(7.20.2.1) Facility

Blades Fawley

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

447.83

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 74

(7.20.2.1) Facility

LATAM Brazil

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

27.39

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

Row 75

(7.20.2.1) Facility

Tooling Denmark

(7.20.2.2) Scope 2, location-based (metric tons CO2e)

39.23

(7.20.2.3) Scope 2, market-based (metric tons CO2e)

0

[Add row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

103950

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

48173

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

1146

(7.22.4) Please explain

Scope 1 emissions are calculated according to the GHG Protocol, covering all direct emissions from owned or controlled sources. Methodology consistent with The Greenhouse Gas Protocol: Scope 2 Guidance

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

0

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

0

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

0

(7.22.4) Please explain

All emissions are covered under the consolidated accounting group. No data included for associates, joint ventures, or unconsolidated subsidiaries.

[Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

- Not relevant as we do not have any subsidiaries

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Row 1

(7.26.1) Requesting member

Select from:

- Ørsted

(7.26.2) Scope of emissions

Select from:

- Scope 1

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.6) Allocation method

Select from:

- Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

861

(7.26.9) Emissions in metric tonnes of CO2e

2625

(7.26.10) Uncertainty ($\pm\%$)

5

(7.26.11) Major sources of emissions

Direct CO2e emissions from fuel for service operations.

(7.26.12) Allocation verified by a third party?

Select from:

No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 2

(7.26.1) Requesting member

Select from:

Ørsted

(7.26.2) Scope of emissions

Select from:

Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

861

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Direct CO2e emissions from fuel for service operations.

(7.26.12) Allocation verified by a third party?

Select from:

No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 3**(7.26.1) Requesting member**

Select from:

Ørsted

(7.26.2) Scope of emissions

Select from:

- Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

- Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.6) Allocation method

Select from:

- Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

- Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

861

(7.26.9) Emissions in metric tonnes of CO2e

295

(7.26.10) Uncertainty ($\pm\%$)

5

(7.26.11) Major sources of emissions

CO2e emissions primarily from raw materials and manufacture of components.

(7.26.12) Allocation verified by a third party?

Select from:

No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 4

(7.26.1) Requesting member

Select from:

Vattenfall Group

(7.26.2) Scope of emissions

Select from:

Scope 1

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.6) Allocation method

Select from:

- Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

- Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

1082

(7.26.9) Emissions in metric tonnes of CO2e

1982

(7.26.10) Uncertainty ($\pm\%$)

5

(7.26.11) Major sources of emissions

Direct CO2e emissions from fuel for service operations.

(7.26.12) Allocation verified by a third party?

Select from:

- No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 5

(7.26.1) Requesting member

Select from:

- Vattenfall Group

(7.26.2) Scope of emissions

Select from:

- Scope 2: market-based

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.6) Allocation method

Select from:

- Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

1082

(7.26.9) Emissions in metric tonnes of CO2e

10

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

Direct CO2e emissions from fuel for service operations.

(7.26.12) Allocation verified by a third party?

Select from:

No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 6

(7.26.1) Requesting member

Select from:

- Vattenfall Group

(7.26.2) Scope of emissions

Select from:

- Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

- Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.6) Allocation method

Select from:

- Allocation based on another physical factor

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

- Other unit, please specify :MW

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

(7.26.9) Emissions in metric tonnes of CO2e

350

(7.26.10) Uncertainty (±%)

5

(7.26.11) Major sources of emissions

CO2e emissions primarily from raw materials and manufacture of components.

(7.26.12) Allocation verified by a third party?

Select from:

No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

(7.26.14) Where published information has been used, please provide a reference

Total Scope 1, 2 & 3 GHG emissions are reported and assured annually by Vestas in our annual sustainability report. The life cycle assessments (LCAs) of all products are reported, third-party reviewed and available for download on vestas.com. Allocation data per customer is not published.

Row 7

(7.26.1) Requesting member

Select from:

TotalEnergies SE

(7.26.2) Scope of emissions

Select from:

- Scope 1

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.9) Emissions in metric tonnes of CO2e

0

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

Row 8

(7.26.1) Requesting member

Select from:

- TotalEnergies SE

(7.26.2) Scope of emissions

Select from:

- Scope 2: market-based

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.9) Emissions in metric tonnes of CO2e

0

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

Row 9

(7.26.1) Requesting member

Select from:

- TotalEnergies SE

(7.26.2) Scope of emissions

Select from:

- Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

- Category 1: Purchased goods and services

(7.26.4) Allocation level

Select from:

- Company wide

(7.26.9) Emissions in metric tonnes of CO2e

0

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

Row 10

(7.26.1) Requesting member

Select from:

Equinor

(7.26.2) Scope of emissions

Select from:

Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.9) Emissions in metric tonnes of CO2e

0

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

Row 11

(7.26.1) Requesting member

Select from:

- Equinor

(7.26.2) Scope of emissions

Select from:

- Scope 2: market-based

(7.26.9) Emissions in metric tonnes of CO2e

0

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

Row 12

(7.26.1) Requesting member

Select from:

- Equinor

(7.26.2) Scope of emissions

Select from:

- Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

- Category 1: Purchased goods and services

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.11) Major sources of emissions

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

[Add row]

(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

Row 1

(7.27.1) Allocation challenges

Select from:

Customer base is too large and diverse to accurately track emissions to the customer level

(7.27.2) Please explain what would help you overcome these challenges

Emission sources in the reporting year may relate to following for customer-related activity: 1. Scope 1: service operations for this customer i.e. direct Scope 1 emissions relating to fuel use 2. Scope 2: where relevant, service operations for customer i.e. indirect Scope 2 emissions relating to district heating 3.

Scope 3: where relevant, manufacture of repaired and new wind turbine service components i.e. production/repair of major components (e.g. gearbox) or minor components. 4. Scope 3: where relevant, manufacture of new wind turbine components i.e. production of wind turbines when a new wind plant is installed in the reporting year. The allocation methods applied by Vestas provide a reasonable and accurate overall apportionment and are designed to focus on the principal GHG emission sources. Allocation is applied in two areas: 1. Apportion Sales Business Unit GHG emissions (Scope 1 & 2) to specific customer. Vestas closely monitors the performance of its Business Units and the performance and operation of its turbines, as previously described. This provides accurate and sufficient data to adopt a reasonable and customer-specific allocation method. The allocation could be improved for Sales Business Units by: • Distinguishing in further detail between sources of emissions from offices, installation and servicing. Currently, it has not been possible to accurately distinguish fuel and energy for installation of new wind power plants (installed in reporting year). This would slightly improve accuracy of results. • Alternative allocation methods are also available (such as allocation based on “number of turbines”, “proportion of wind turbines that require a service visit”, “GWh generated”). These are also reasonable methods for allocation and each has differing underlying assumptions and depth of data collection requirements. 2. Apportion value-chain GHG emissions (Scope 3) to specific customer based on life cycle assessment (LCA) reports for turbines and actual service consumption data for service. Based on Vestas LCAs of wind turbine models (at typical wind-plant configurations) the Scope 3 GHG emissions are estimated for the wind turbine-only CO2-e emissions. This covers the wind-turbine-only and balance-of-plant, where relevant. Allocation assumes that the typical wind plant configuration represents the customer's specific wind plant configuration. LCAs conducted cover all Vestas turbine products. Allocation method is very rigorous.

[Add row]

(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

(7.28.1) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Select from:

No

(7.28.3) Primary reason for no plans to develop your capabilities to allocate emissions to your customers

Select from:

Capabilities to allocate emissions to customers already maximized

(7.28.4) Explain why you do not plan to develop capabilities to allocate emissions to your customers

Sufficient data and allocation methods are already available, based on physical output parameters.

[Fixed row]

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

More than 0% but less than or equal to 5%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>
Consumption of purchased or acquired electricity	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>
Consumption of purchased or acquired heat	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>
Consumption of purchased or acquired steam	<p>Select from:</p> <p><input checked="" type="checkbox"/> No</p>
Consumption of purchased or acquired cooling	<p>Select from:</p> <p><input checked="" type="checkbox"/> No</p>
Generation of electricity, heat, steam, or cooling	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes</p>

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

21768.83

(7.30.1.3) MWh from non-renewable sources

420072.19

(7.30.1.4) Total (renewable + non-renewable) MWh

441841.02

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

165829.16

(7.30.1.3) MWh from non-renewable sources

252.3

(7.30.1.4) Total (renewable + non-renewable) MWh

166081.46

Consumption of purchased or acquired heat

(7.30.1.1) Heating value

Select from:

HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

26270.83

(7.30.1.3) MWh from non-renewable sources

6093.33

(7.30.1.4) Total (renewable + non-renewable) MWh

32364.16

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.4) Total (renewable + non-renewable) MWh

0.00

Total energy consumption

(7.30.1.1) Heating value

Select from:

HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

213868.82

(7.30.1.3) MWh from non-renewable sources

426417.82

(7.30.1.4) Total (renewable + non-renewable) MWh

640286.64

[Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	<i>Select from:</i> <input checked="" type="checkbox"/> Yes
Consumption of fuel for the generation of heat	<i>Select from:</i> <input checked="" type="checkbox"/> Yes
Consumption of fuel for the generation of steam	<i>Select from:</i> <input checked="" type="checkbox"/> No
Consumption of fuel for the generation of cooling	<i>Select from:</i> <input checked="" type="checkbox"/> No
Consumption of fuel for co-generation or tri-generation	<i>Select from:</i> <input checked="" type="checkbox"/> No

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

10819.38

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

10819.38

(7.30.7.8) Comment

Renewable Heating

Other biomass

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

No other biomass

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from:

Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

NA

Coal

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

No coal products are consumed

Oil

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

395759.12

(7.30.7.3) MWh fuel consumed for self-generation of electricity

16334.83

(7.30.7.4) MWh fuel consumed for self-generation of heat

379424.29

(7.30.7.8) Comment

Fuels consumed for electricity and heat

Gas

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

35262.52

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

35262.52

(7.30.7.8) Comment

Natural gas consumed for heat

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) Heating value

Select from:

Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

NA

Total fuel

(7.30.7.1) Heating value

Select from:

HHV

(7.30.7.2) Total fuel MWh consumed by the organization

441841.02

(7.30.7.3) MWh fuel consumed for self-generation of electricity

16334.83

(7.30.7.4) MWh fuel consumed for self-generation of heat

425506.19

(7.30.7.8) Comment

Total fuel consumed

[Fixed row]

(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

Electricity

(7.30.9.1) Total Gross generation (MWh)

101498

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

101498

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

Heat

(7.30.9.1) Total Gross generation (MWh)

0

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

Steam

(7.30.9.1) Total Gross generation (MWh)

0

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

Cooling

(7.30.9.1) Total Gross generation (MWh)

0

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

[Fixed row]

(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in 7.7.

Row 1

(7.30.14.1) Country/area

Select from:

Denmark

(7.30.14.2) Sourcing method

Select from:

Physical power purchase agreement (physical PPA) with a grid-connected generator

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 2

(7.30.14.1) Country/area

Select from:

Germany

(7.30.14.2) Sourcing method

Select from:

Project-specific contract with an electricity supplier

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Large hydropower (>25 MW)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

5939

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Norway

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 3

(7.30.14.1) Country/area

Select from:

- Italy

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Solar

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

39725

(7.30.14.6) Tracking instrument used

Select from:

- GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Italy

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 4

(7.30.14.1) Country/area

Select from:

- Spain

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Large hydropower (>25 MW)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

15879

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- United Kingdom of Great Britain and Northern Ireland

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 5

(7.30.14.1) Country/area

Select from:

- United Kingdom of Great Britain and Northern Ireland

(7.30.14.2) Sourcing method

Select from:

- Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

13581

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 6

(7.30.14.1) Country/area

Select from:

- United States of America

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

29327

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- United States of America

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 7

(7.30.14.1) Country/area

Select from:

China

(7.30.14.2) Sourcing method

Select from:

Purchase from an on-site installation owned by a third party (on-site PPA)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

11612

(7.30.14.6) Tracking instrument used

Select from:

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

China

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2020

(7.30.14.10) Comment

Row 8

(7.30.14.1) Country/area

Select from:

India

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Sustainable biomass

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

6472

(7.30.14.6) Tracking instrument used

Select from:

I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

India

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 9

(7.30.14.1) Country/area

Select from:

Romania

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

296

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 10

(7.30.14.1) Country/area

Select from:

Brazil

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

1216

(7.30.14.6) Tracking instrument used

Select from:

I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Brazil

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2015

(7.30.14.10) Comment

Row 12

(7.30.14.1) Country/area

Select from:

Mexico

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

224

(7.30.14.6) Tracking instrument used

Select from:

- I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Mexico

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2015

(7.30.14.10) Comment

Row 13

(7.30.14.1) Country/area

Select from:

- Sweden

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

389

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Sweden

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 14

(7.30.14.1) Country/area

Select from:

- Turkey

(7.30.14.2) Sourcing method

Select from:

- Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used

Select from:

I-REC

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Turkey

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2012

(7.30.14.10) Comment

Row 15

(7.30.14.1) Country/area

Select from:

France

(7.30.14.2) Sourcing method

Select from:

Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

1011

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- France

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 16

(7.30.14.1) Country/area

Select from:

- Australia

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

138

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Australia

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 17

(7.30.14.1) Country/area

Select from:

Greece

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

189

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 18

(7.30.14.1) Country/area

Select from:

Netherlands

(7.30.14.2) Sourcing method

Select from:

Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

426

(7.30.14.6) Tracking instrument used

Select from:

- GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 19

(7.30.14.1) Country/area

Select from:

- Poland

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

130

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Poland

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 20

(7.30.14.1) Country/area

Select from:

- Bulgaria

(7.30.14.2) Sourcing method

Select from:

- Unbundled procurement of energy attribute certificates (EACs)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used

Select from:

GO

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

Yes

(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

2021

(7.30.14.10) Comment

Row 21

(7.30.14.1) Country/area

Select from:

Austria

(7.30.14.2) Sourcing method

Select from:

Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

113

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Austria

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

Row 22

(7.30.14.1) Country/area

Select from:

- Portugal

(7.30.14.2) Sourcing method

Select from:

- Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

- Electricity

(7.30.14.4) Low-carbon technology type

Select from:

- Wind

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

1071

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Portugal

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 24

(7.30.14.1) Country/area

Select from:

Denmark

(7.30.14.2) Sourcing method

Select from:

Heat/steam/cooling supply agreement

(7.30.14.3) Energy carrier

Select from:

Heat

(7.30.14.4) Low-carbon technology type

Select from:

Sustainable biomass

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

31743

(7.30.14.6) Tracking instrument used

Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Denmark

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 25

(7.30.14.1) Country/area

Select from:

Poland

(7.30.14.2) Sourcing method

Select from:

Heat/steam/cooling supply agreement

(7.30.14.3) Energy carrier

Select from:

Heat

(7.30.14.4) Low-carbon technology type

Select from:

Other biomass

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

45

(7.30.14.6) Tracking instrument used

Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Poland

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

No

(7.30.14.10) Comment

Row 26

(7.30.14.1) Country/area

Select from:

Sweden

(7.30.14.2) Sourcing method

Select from:

- Heat/steam/cooling supply agreement

(7.30.14.3) Energy carrier

Select from:

- Heat

(7.30.14.4) Low-carbon technology type

Select from:

- Other biomass

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

216

(7.30.14.6) Tracking instrument used

Select from:

- Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

- Sweden

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

- No

(7.30.14.10) Comment

[Add row]

(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.

Argentina

(7.30.16.1) Consumption of purchased electricity (MWh)

107.56

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

107.56

Australia

(7.30.16.1) Consumption of purchased electricity (MWh)

137.9

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

137.90

Austria

(7.30.16.1) Consumption of purchased electricity (MWh)

113.37

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

24.5

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

137.87

Belgium

(7.30.16.1) Consumption of purchased electricity (MWh)

144.28

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

144.28

Brazil

(7.30.16.1) Consumption of purchased electricity (MWh)

1216.35

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1216.35

Bulgaria

(7.30.16.1) Consumption of purchased electricity (MWh)

79.6

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

79.60

Canada

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Chile

(7.30.16.1) Consumption of purchased electricity (MWh)

28.14

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

28.14

China

(7.30.16.1) Consumption of purchased electricity (MWh)

11612.02

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

11612.02

Denmark

(7.30.16.1) Consumption of purchased electricity (MWh)

37249.16

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

31743.59

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

68992.75

Egypt

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Finland

(7.30.16.1) Consumption of purchased electricity (MWh)

98.1

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

98.10

France

(7.30.16.1) Consumption of purchased electricity (MWh)

1011.01

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1011.01

Germany

(7.30.16.1) Consumption of purchased electricity (MWh)

5966.55

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

334.7

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

6301.25

Greece

(7.30.16.1) Consumption of purchased electricity (MWh)

189.15

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

189.15

India

(7.30.16.1) Consumption of purchased electricity (MWh)

6472.12

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

6472.12

Ireland

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Italy

(7.30.16.1) Consumption of purchased electricity (MWh)

39725.17

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

39725.17

Japan

(7.30.16.1) Consumption of purchased electricity (MWh)

56.35

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

56.35

Jordan

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Kenya

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Mexico

(7.30.16.1) Consumption of purchased electricity (MWh)

223.97

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

223.97

Mongolia

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Morocco

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Netherlands

(7.30.16.1) Consumption of purchased electricity (MWh)

425.66

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

425.66

New Zealand

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Norway

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Peru

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Philippines

(7.30.16.1) Consumption of purchased electricity (MWh)

351.21

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

351.21

Poland

(7.30.16.1) Consumption of purchased electricity (MWh)

130.47

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

45.23

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

175.70

Portugal

(7.30.16.1) Consumption of purchased electricity (MWh)

1071

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1071.00

Republic of Korea

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Romania

(7.30.16.1) Consumption of purchased electricity (MWh)

296.36

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

296.36

Saudi Arabia

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Senegal

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

South Africa

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Spain

(7.30.16.1) Consumption of purchased electricity (MWh)

15879.64

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

15879.64

Sweden

(7.30.16.1) Consumption of purchased electricity (MWh)

389

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

216.14

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

605.14

Taiwan, China

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Thailand

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

Turkey

(7.30.16.1) Consumption of purchased electricity (MWh)

173.5

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

173.50

United Kingdom of Great Britain and Northern Ireland

(7.30.16.1) Consumption of purchased electricity (MWh)

13581.62

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

13581.62

United States of America

(7.30.16.1) Consumption of purchased electricity (MWh)

29327.73

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

29327.73

Uruguay

(7.30.16.1) Consumption of purchased electricity (MWh)

24.47

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

24.47

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

0

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

0.00

[Fixed row]

(7.34) Does your organization measure the efficiency of any of its products or services?

(7.34.1) Measurement of product/service efficiency

Select from:

Yes

(7.34.2) Comment

A wind power plant is designed to provide the physical function (or service) of delivering kWh (or MWh) of electricity to our customers. In total, Vestas' upstream Scope 3 emissions represent ~98% of total GHG emissions. Measuring product efficiency, in relation to CO₂, therefore directly, and most significantly, correlates to measuring CO₂ intensity per kWh. As such, Vestas has developed an approved Science-based CO₂ intensity target based upon the fundamental service delivered as "grams CO₂e per kWh" equivalent to "kg CO₂e per MWh". Vestas' intensity target provides clear justification for setting an emissions intensity target that is based directly on the service provided (i.e. kWh electricity) and the highest contributors to both total GHG emissions and Scope 3 emissions sources and activities. Providing a clear measure of product/service efficiency. In Vestas, we have digitalised our approach to measurement of scope 3 CO₂, based on a digital twin for financial transactions relating to both component-related spend and financial service spend. This allows us to accurately and comprehensively measure CO₂ emissions, as well as product/service performance (i.e. kWh generation); therefore, providing capability to apportion these factors (i.e. GHG emissions and kWh performance) to those responsible in the organisation to both manage and be accountable for improvement.

[Fixed row]

(7.34.1) Provide details of the metrics used to measure the efficiency of your organization's products or services.

Row 1

(7.34.1.1) Category of product or service

Select from:

Power generation equipment

(7.34.1.2) Product or service (optional)

All Vestas activity in relation to wind turbines produced and shipped in reporting year (i.e. according to scope 3 GHG protocol, which correlates to 98% of Vestas total GHG emissions).

(7.34.1.3) % of revenue from this product or service in the reporting year

100

(7.34.1.4) Efficiency figure in the reporting year

8.1

(7.34.1.5) Metric numerator

Select from:

Other, please specify :kg CO2e

(7.34.1.6) Metric denominator

Select from:

megawatt hour (MWh)

(7.34.1.7) Comment

A wind power plant is designed to provide the physical function (or service) of delivering kWh (or MWh) of electricity to our customers. In total, Vestas' upstream Scope 3 emissions represent ~98% of total GHG emissions. Measuring product efficiency, in relation to CO2, therefore directly, and most significantly, correlates to measuring CO2 intensity per kWh. As such, Vestas has developed an approved Science-based Target for CO2 intensity target based upon the fundamental service delivered as "grams CO2e per kWh" equivalent to "kg CO2e per MWh". Vestas' intensity target provides clear justification for setting an emissions intensity target that is based directly on the service provided (i.e. kWh electricity) and the highest contributors to both total GHG emissions and Scope 3 emissions sources and activities. Providing a clear measure of product/service efficiency. In Vestas, we have digitalised our approach to measurement of scope 3 CO2, based on a digital twin for financial transactions relating to both component-related spend and financial service spend. This allows us to accurately and comprehensively measure CO2 emissions, as well as product/service performance (i.e. kWh generation); therefore, providing capability to apportion these factors (i.e. GHG emissions and kWh performance) to those responsible in the organisation to both manage and be accountable for improvement.

[Add row]

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.00000607

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

105096

(7.45.3) Metric denominator

Select from:

- unit total revenue

(7.45.4) Metric denominator: Unit total

17295000000

(7.45.5) Scope 2 figure used

Select from:

- Market-based

(7.45.6) % change from previous year

3.54

(7.45.7) Direction of change

Select from:

- Decreased

(7.45.8) Reasons for change

Select all that apply

- Other emissions reduction activities
- Change in revenue
- Other, please specify :Change in Emissions

(7.45.9) Please explain

Increase in Revenue of 12.4% compared to 2023 and through emission reduction initiatives

[Add row]

(7.52) Provide any additional climate-related metrics relevant to your business.

Row 1

(7.52.1) Description

Select from:

Waste

(7.52.2) Metric value

1

(7.52.3) Metric numerator

Amount of waste for landfill and incineration

(7.52.4) Metric denominator (intensity metric only)

MW produced and shipped

(7.52.5) % change from previous year

16.7

(7.52.6) Direction of change

Select from:

Decreased

(7.52.7) Please explain

In 2024, material efficiency improved to 1.0 tonnes of non recycled waste per MW produced and shipped (2023- 1.2 tonnes). This demonstrates the decrease of 17 percent largely due to waste generation decreasing relatively to production levels, as well as the impact of large cleanup of waste in our Windsor site in 2023 and reduced production in our Ringkobing site during the year.

[\[Add row\]](#)

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

- Absolute target
- Intensity target

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

Select from:

- Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

- Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

VEST-DEN-001-OFF Target Validation Decision Letter_.pdf

(7.53.1.4) Target ambition

Select from:

- 1.5°C aligned

(7.53.1.5) Date target was set

06/23/2020

(7.53.1.6) Target coverage

Select from:

- Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- Methane (CH4)
- Nitrous oxide (N2O)
- Carbon dioxide (CO2)
- Perfluorocarbons (PFCs)
- Hydrofluorocarbons (HFCs)
- Sulphur hexafluoride (SF6)
- Nitrogen trifluoride (NF3)

(7.53.1.8) Scopes

Select all that apply

- Scope 1
- Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

- Market-based

(7.53.1.11) End date of base year

12/30/2019

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

65978

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

48199

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

0.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

114177.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

12/30/2030

(7.53.1.55) Targeted reduction from base year (%)

100

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

0.000

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

104000

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

1000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

105000.000

(7.53.1.78) Land-related emissions covered by target

Select from:

No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

8.04

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

The target covers our scope 1 and 2 emissions

(7.53.1.83) Target objective

Carbon neutral by 2030

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

To achieve our scope 1 and 2 target, we focus on transitioning to renewable energy across our own operations. To reduce scope 2 emissions, each year since 2020 we source 100 percent renewable electricity across our own operations globally. We are also transitioning to renewable energy for heating our factories. In 2024, we extended the reach of the biomass boiler at our facility in Daimiel, Spain so it provides renewable heating to more of the factory. We also initiated a project to facilitate the installation of an electrical HVAC system at our facility in Brighton, USA, which will replace the current gas fuelled heating system. At the end of 2024, five of our

15 factory heating systems were renewably fuelled. For our onshore service activities, we are cooperating with industry leaders to transition to renewably fuelled vehicles. At the end of 2024, we had transitioned 1,734 vehicles in our service fleet to renewable fuel, out of a total of 6,676 service vehicles in the service vehicle fleet. In 2024, we also increased the share of (PH)EVs in our benefit car fleet to 92 percent. To support the scale-up of (PH)EVs, we continue to invest in charging infrastructure across our main locations. In 2024, we piloted Sustainable Aviation Fuel (SAF) at the Baltic Eagle wind farm in the Baltic Sea. As part of the project, Vestas' technicians and jack-up vessel crew were transported by helicopters partly powered by SAF to and from the Baltic Eagle wind farm during the construction phase of 50 offshore wind turbines. To transition to sustainable biofuels for our offshore service vessels, we pioneered the first hydrogen-powered crew transfer vessel (CTV) in the wind industry in July 2022. In 2023, we extended an existing charter of a dual-fuel CTV from five to ten years. The vessel, initially powered by methanol with marine gas oil as a backup, will be operated entirely with methanol.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

No

[Add row]

(7.53.2) Provide details of your emissions intensity targets and progress made against those targets.

Row 1

(7.53.2.1) Target reference number

Select from:

Int 1

(7.53.2.2) Is this a science-based target?

Select from:

Yes, and this target has been approved by the Science Based Targets initiative

(7.53.2.3) Science Based Targets initiative official validation letter

VEST-DEN-001-OFF Target Validation Decision Letter_.pdf

(7.53.2.4) Target ambition

Select from:

- 2°C aligned

(7.53.2.5) Date target was set

06/23/2020

(7.53.2.6) Target coverage

Select from:

- Organization-wide

(7.53.2.7) Greenhouse gases covered by target

Select all that apply

- Methane (CH4)
- Nitrous oxide (N2O)
- Carbon dioxide (CO2)
- Perfluorocarbons (PFCs)
- Hydrofluorocarbons (HFCs)
- Nitrogen trifluoride (NF3)
- Sulphur hexafluoride (SF6)

(7.53.2.8) Scopes

Select all that apply

- Scope 3

(7.53.2.10) Scope 3 categories

Select all that apply

- Category 15: Investments
- Category 2: Capital goods
- Category 6: Business travel
- Category 7: Employee commuting
- Category 8: Upstream leased assets
- Category 1: Purchased goods and services
- Category 5: Waste generated in operations
- Category 12: End-of-life treatment of sold products
- Category 4: Upstream transportation and distribution
- Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

(7.53.2.11) Intensity metric

Select from:

Metric tons CO₂e per megawatt hour (MWh)

(7.53.2.12) End date of base year

12/30/2019

(7.53.2.15) Intensity figure in base year for Scope 3, Category 1: Purchased goods and services

6.13

(7.53.2.16) Intensity figure in base year for Scope 3, Category 2: Capital goods

0.119

(7.53.2.17) Intensity figure in base year for Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

0.025

(7.53.2.18) Intensity figure in base year for Scope 3, Category 4: Upstream transportation and distribution

0.422

(7.53.2.19) Intensity figure in base year for Scope 3, Category 5: Waste generated in operations

0.011

(7.53.2.20) Intensity figure in base year for Scope 3, Category 6: Business travel

0.025

(7.53.2.21) Intensity figure in base year for Scope 3, Category 7: Employee commuting

0.038

(7.53.2.22) Intensity figure in base year for Scope 3, Category 8: Upstream leased assets

0.034

(7.53.2.26) Intensity figure in base year for Scope 3, Category 12: End-of-life treatment of sold products

0.011

(7.53.2.29) Intensity figure in base year for Scope 3, Category 15: Investments

0.006

(7.53.2.32) Intensity figure in base year for total Scope 3

6.8210000000

(7.53.2.33) Intensity figure in base year for all selected Scopes

6.8210000000

(7.53.2.36) % of total base year emissions in Scope 3, Category 1: Purchased goods and services covered by this Scope 3, Category 1: Purchased goods and services intensity figure

70

(7.53.2.37) % of total base year emissions in Scope 3, Category 2: Capital goods covered by this Scope 3, Category 2: Capital goods intensity figure

70

(7.53.2.38) % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) covered by this Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) intensity figure

70

(7.53.2.39) % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution covered by this Scope 3, Category 4: Upstream transportation and distribution intensity figure

70

(7.53.2.40) % of total base year emissions in Scope 3, Category 5: Waste generated in operations covered by this Scope 3, Category 5: Waste generated in operations intensity figure

70

(7.53.2.41) % of total base year emissions in Scope 3, Category 6: Business travel covered by this Scope 3, Category 6: Business travel intensity figure

70

(7.53.2.42) % of total base year emissions in Scope 3, Category 7: Employee commuting covered by this Scope 3, Category 7: Employee commuting intensity figure

70

(7.53.2.43) % of total base year emissions in Scope 3, Category 8: Upstream leased assets covered by this Scope 3, Category 8: Upstream leased assets intensity figure

70

(7.53.2.47) % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products covered by this Scope 3, Category 12: End-of-life treatment of sold products intensity figure

70

(7.53.2.50) % of total base year emissions in Scope 3, Category 15: Investments covered by this Scope 3, Category 15: Investments intensity figure

70

(7.53.2.53) % of total base year emissions in Scope 3 (in all Scope 3 categories) covered by this total Scope 3 intensity figure

70

(7.53.2.54) % of total base year emissions in all selected Scopes covered by this intensity figure

70

(7.53.2.55) End date of target

12/30/2030

(7.53.2.56) Targeted reduction from base year (%)

45

(7.53.2.57) Intensity figure at end date of target for all selected Scopes

3.7515500000

(7.53.2.59) % change anticipated in absolute Scope 3 emissions

0

(7.53.2.62) Intensity figure in reporting year for Scope 3, Category 1: Purchased goods and services

4.975

(7.53.2.63) Intensity figure in reporting year for Scope 3, Category 2: Capital goods

0.111

(7.53.2.64) Intensity figure in reporting year for Scope 3, Category 3: Fuel- and energy-related activities

0.019

(7.53.2.65) Intensity figure in reporting year for Scope 3, Category 4: Upstream transportation and distribution

0.428

(7.53.2.66) Intensity figure in reporting year for Scope 3, Category 5: Waste generated in operations

0.012

(7.53.2.67) Intensity figure in reporting year for Scope 3, Category 6: Business travel

0.026

(7.53.2.68) Intensity figure in reporting year for Scope 3, Category 7: Employee commuting

0.038

(7.53.2.69) Intensity figure in reporting year for Scope 3, Category 8: Upstream leased assets

0

(7.53.2.73) Intensity figure in reporting year for Scope 3, Category 12: End-of-life treatment of sold products

0.051

(7.53.2.76) Intensity figure in reporting year for Scope 3, Category 15: Investments

0

(7.53.2.79) Intensity figure in reporting year for total Scope 3

5.6600000000

(7.53.2.80) Intensity figure in reporting year for all selected Scopes

5.66000000000

(7.53.2.81) Land-related emissions covered by target

Select from:

No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.2.82) % of target achieved relative to base year

37.82

(7.53.2.83) Target status in reporting year

Select from:

Underway

(7.53.2.85) Explain target coverage and identify any exclusions

The target covers emissions from Vestas supply chain scope 3 (70% of total scope 3 emissions).

(7.53.2.86) Target objective

45% percent reduction in supply chain scope 3 emission intensity (kg CO2e / MWh generated) by 2030

(7.53.2.87) Plan for achieving target, and progress made to the end of the reporting year

To achieve our scope 3 target we focus on working with suppliers to reduce supply chain emissions from materials and transport. We are committed to decarbonising our supply chain, as more than 98 percent of our carbon footprint in 2024 came from scope 3. Since 2020, we have worked to reduce emissions with our strategic suppliers of steel, iron, blades, and transport, which accounted for about 66 percent of Vestas' scope 3 emissions in 2024. Reductions in suppliers' production and supply chains significantly impact our scope 3 emissions. To reduce scope 3 emissions, we prioritise gathering precise sustainability data from suppliers, focusing on high-emitting sources like steel and blade production. This engagement enables evidence-based target setting with suppliers and supports our overall scope 3 reduction target. We are committed to continuous improvement and driving the development of high-quality sustainability data. Commercialise low-emission steel: Steel and iron are key raw materials in our wind turbines and accounted for about 48 percent of Vestas' scope 3 emissions in 2024. Decarbonising steel production is crucial to meet our reduction targets. In addition, the EU's Carbon Border Adjustment Mechanism will increase costs for imported conventional steel and thus increase the need for emissions-reduced steel. In 2023, Vestas partnered with ArcelorMittal to create low-emission steel by melting scrap steel in an electric arc furnace powered entirely by wind energy, reducing GHG emissions by up to 66 percent compared to the conventional steel making route. In 2024, Vestas introduced low-emission steel in its sustainable product portfolio. The first project using this steel was the Baltic Power offshore wind project in Poland, with 52 out of 76 towers

using low-emission steel. Piloting wooden tower technology: In 2021, Vestas invested in Modvion™, a company specialising in modular sustainable wind turbine towers made from laminated veneer lumber (LVL). LVL is a low-carbon material sourced sustainably, offering significant carbon emission reductions compared to steel or concrete towers, as wood stores carbon when trees grow. More carbon emissions are stored in the tower than emitted during the production process. Vestas aims to support Modvion's™ scale-up strategy and integrate LVL towers into our design and manufacturing processes.

(7.53.2.88) Target derived using a sectoral decarbonization approach

Select from:

No

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

Select all that apply

Targets to increase or maintain low-carbon energy consumption or production

(7.54.1) Provide details of your targets to increase or maintain low-carbon energy consumption or production.

Row 1

(7.54.1.1) Target reference number

Select from:

Low 1

(7.54.1.2) Date target was set

06/23/2020

(7.54.1.3) Target coverage

Select from:

Organization-wide

(7.54.1.4) Target type: energy carrier

Select from:

Electricity

(7.54.1.5) Target type: activity

Select from:

Consumption

(7.54.1.6) Target type: energy source

Select from:

Renewable energy source(s) only

(7.54.1.7) End date of base year

12/30/2019

(7.54.1.8) Consumption or production of selected energy carrier in base year (MWh)

262283

(7.54.1.9) % share of low-carbon or renewable energy in base year

68

(7.54.1.10) End date of target

12/30/2030

(7.54.1.11) % share of low-carbon or renewable energy at end date of target

100

(7.54.1.12) % share of low-carbon or renewable energy in reporting year

100

(7.54.1.13) % of target achieved relative to base year

100.00

(7.54.1.14) Target status in reporting year

Select from:

Achieved and maintained

(7.54.1.16) Is this target part of an emissions target?

Yes. Vestas has a carbon neutral target for scope 1 and 2 combined emissions.

(7.54.1.17) Is this target part of an overarching initiative?

Select all that apply

No, it's not part of an overarching initiative

(7.54.1.19) Explain target coverage and identify any exclusions

Vestas is committed to sourcing 100 percent of its electricity from renewable sources. Since 2013, this has been achieved partly by purchasing renewable electricity and certificates for renewable energy, and partly by compensating for the consumption of non-renewable electricity with Vestas-owned wind power plants. In 2019, Vestas has decided no longer to use compensation for non-renewable electricity. In 2019, Vestas' share of renewable electricity increased from 68 percent to 82 percent, enabled by purchase of more renewable electricity. In 2020, Vestas achieved 100% renewable electricity and this was maintained in 2024.

(7.54.1.20) Target objective

Sourcing 100% renewable electricity

(7.54.1.22) List the actions which contributed most to achieving this target

We purchase renewable electricity credits to cover our energy consumption in the markets where we operate. The contractual instruments used include purchased electricity from renewable energy suppliers, green energy certificates, guarantees of origin, and renewable energy certificates.

[Add row]

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e
Under investigation	28	'Numeric input
To be implemented	6	174
Implementation commenced	4	193
Implemented	11	1687
Not to be implemented	5	'Numeric input

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Lighting

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

12

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

2115

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

4000

(7.55.2.7) Payback period

Select from:

1-3 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

6-10 years

(7.55.2.9) Comment

Light Dependent Resistor at Warehouse

Row 2

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

186

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

160572

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

408000

(7.55.2.7) Payback period

Select from:

4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

11-15 years

(7.55.2.9) Comment

Installation of Biomass boiler by replacing the old gas boiler

Row 3

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

16

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

1640

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

3257

(7.55.2.7) Payback period

Select from:

1-3 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

11-15 years

(7.55.2.9) Comment

AHU to Cold room modification in the Kitchen

Row 4

(7.55.2.1) Initiative category & Initiative type

Low-carbon energy consumption

Liquid biofuels

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

1687

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

1938000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

24225000

(7.55.2.7) Payback period

Select from:

4-10 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

11-15 years

(7.55.2.9) Comment

Transition to EV Vehicles from Diesel/Petrol in our service operations

[Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

- Financial optimization calculations

(7.55.3.2) Comment

Fuel savings for transport through planning of routes and tracking driving behaviour

Row 2

(7.55.3.1) Method

Select from:

- Dedicated budget for energy efficiency

(7.55.3.2) Comment

As part of the building policy specific specifications are in place for energy investments.

Row 3

(7.55.3.1) Method

Select from:

- Dedicated budget for low-carbon product R&D

(7.55.3.2) Comment

Research and development costs recognised in the income statement amounted to EUR 457m in 2022. R&D costs are wholly dedicated to renewable energy solutions.

Row 4

(7.55.3.1) Method

Select from:

Dedicated budget for other emissions reduction activities

(7.55.3.2) Comment

Covering extra cost for electric vehicles

[Add row]

(7.71) Does your organization assess the life cycle emissions of any of its products or services?

	Assessment of life cycle emissions	Comment
	Select from: <input checked="" type="checkbox"/> Yes	<i>Vestas uses life cycle assessment (LCA) carried out in conformity with ISO 14040 and ISO 14044 for all wind turbine products.</i>

[Fixed row]

(7.71.1) Provide details of how your organization assesses the life cycle emissions of its products or services.

(7.71.1.1) Products/services assessed

Select from:

All existing and new products/services

(7.71.1.2) Life cycle stage(s) most commonly covered

Select from:

Cradle-to-grave

(7.71.1.3) Methodologies/standards/tools applied

Select all that apply

- ISO 14040 & 14044

(7.71.1.4) Comment

Vestas life cycle assessments (LCAs) build upon a history of conducting LCAs of Vestas turbines since 2001. As a result, the method has reached a high level of maturity and is performed in a professional manner using state-of-the-art methods. The modelling used for the study is outstanding with regard to the level of detail and the amount of primary data used. for example, it covers around 25,000 components representing over 99.95% of the total mass of materials of the product. For the manufacturing part, the study includes information from over 100 sites. For plausible use phase scenarios, Vestas can rely on real-time performance data of wind turbines around the world, which covers 13% of current worldwide installed wind capacity. All studies are third-party expert reviewed. And it can be concluded that the LCA studies are carried out in conformity with ISO 14040, ISO 14044 and ISO/TS 14071. The reviewer found the overall quality of the methodology and its execution to be of a high standard for the purposes of the study. The studies are reported in a comprehensive manner including a transparent documentation of its scope and methodological choices.

[Fixed row]

(7.73) Are you providing product level data for your organization's goods or services?

Select from:

- Yes, I will provide data through the CDP questionnaire

(7.73.1) Give the overall percentage of total emissions, for all Scopes, that are covered by these products.

100

(7.73.2) Complete the following table for the goods/services for which you want to provide data.

Row 1

(7.73.2.1) Requesting member

Select from:

- TotalEnergies SE

(7.73.2.2) Name of good/ service

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

(7.73.2.3) Description of good/ service

Emission sources in the reporting year may relate to following for customer-related activity: 1. Scope 1: service operations for this customer i.e. direct Scope 1 emissions relating to fuel use 2. Scope 2: where relevant, service operations for customer i.e. indirect Scope 2 emissions relating to district heating 3.

Scope 3: where relevant, manufacture of repaired and new wind turbine service components i.e. production/repair of major components (e.g. gearbox) and minor components. 4. Scope 3: where relevant, manufacture of new wind turbine components i.e. production of wind turbines when a new wind plant is installed in the reporting year

(7.73.2.4) Type of product

Select from:

Final

(7.73.2.5) Unique product identifier

Not applicable.

(7.73.2.6) Total emissions in kg CO2e per unit

0

(7.73.2.9) Explanation of change

Activity level change for reporting period.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

ISO 14040 & 14044

Row 2

(7.73.2.1) Requesting member

Select from:

Ørsted

(7.73.2.2) Name of good/ service

Servicing of turbines in reporting year and where relevant, manufacture of new wind turbine components (i.e. production of wind turbines when a new wind plant is installed in the reporting year).

(7.73.2.3) Description of good/ service

Emission sources in the reporting year may relate to following for customer-related activity: 1. Scope 1: service operations for this customer i.e. direct Scope 1 emissions relating to fuel use 2. Scope 2: where relevant, service operations for customer i.e. indirect Scope 2 emissions relating to district heating 3.

Scope 3: where relevant, manufacture of repaired and new wind turbine service components i.e. production/repair of major components (e.g. gearbox) and minor components. 4. Scope 3: where relevant, manufacture of new wind turbine components i.e. production of wind turbines when a new wind plant is installed in the reporting year

(7.73.2.4) Type of product

Select from:

Final

(7.73.2.5) Unique product identifier

Not applicable.

(7.73.2.6) Total emissions in kg CO2e per unit

2920

(7.73.2.9) Explanation of change

Activity level change for reporting period.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

ISO 14040 & 14044

Row 3

(7.73.2.1) Requesting member

Select from:

Equinor

(7.73.2.2) Name of good/ service

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

(7.73.2.3) Description of good/ service

Emission sources in the reporting year may relate to following for customer-related activity: 1. Scope 1: service operations for this customer i.e. direct Scope 1 emissions relating to fuel use 2. Scope 2: where relevant, service operations for customer i.e. indirect Scope 2 emissions relating to district heating 3.

Scope 3: where relevant, manufacture of repaired and new wind turbine service components i.e. production/repair of major components (e.g. gearbox) and minor components. 4. Scope 3: where relevant, manufacture of new wind turbine components i.e. production of wind turbines when a new wind plant is installed in the reporting year

(7.73.2.4) Type of product

Select from:

Final

(7.73.2.5) Unique product identifier

Not applicable.

(7.73.2.6) Total emissions in kg CO2e per unit

0

(7.73.2.9) Explanation of change

Activity level change for reporting period.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

ISO 14040 & 14044

Row 4

(7.73.2.1) Requesting member

Select from:

Vattenfall Group

(7.73.2.2) Name of good/ service

Servicing of turbines in reporting year and where relevant, manufacture of new wind turbine components (i.e. production of wind turbines when a new wind plant is installed in the reporting year).

(7.73.2.3) Description of good/ service

Emission sources in the reporting year may relate to following for customer-related activity: 1. Scope 1: service operations for this customer i.e. direct Scope 1 emissions relating to fuel use 2. Scope 2: where relevant, service operations for customer i.e. indirect Scope 2 emissions relating to district heating 3.

Scope 3: where relevant, manufacture of repaired and new wind turbine service components i.e. production/repair of major components (e.g. gearbox) and minor components. 4. Scope 3: where relevant, manufacture of new wind turbine components i.e. production of wind turbines when a new wind plant is installed in the reporting year

(7.73.2.4) Type of product

Select from:

Final

(7.73.2.5) Unique product identifier

Not applicable.

(7.73.2.6) Total emissions in kg CO2e per unit

2342

(7.73.2.9) Explanation of change

Activity level change for reporting period.

(7.73.2.10) Methods used to estimate lifecycle emissions

Select from:

ISO 14040 & 14044

[\[Add row\]](#)

(7.73.3) Complete the following table with data for lifecycle stages of your goods and/or services.

Row 1

(7.73.3.1) Requesting member

Select from:

TotalEnergies SE

(7.73.3.2) Name of good/ service

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

(7.73.3.3) Scope

Select from:

Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

- Cradle to grave

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

- Yes

(7.73.3.7) Type of data used

Select from:

- Primary and secondary

(7.73.3.8) Data quality

Not relevant.

Row 2

(7.73.3.1) Requesting member

Select from:

- Ørsted

(7.73.3.2) Name of good/ service

Servicing of turbines in reporting year and where relevant, manufacture of new wind turbine components (i.e. production of wind turbines when a new wind plant is installed in the reporting year).

(7.73.3.3) Scope

Select from:

- Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

- Cradle to grave

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

2920

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

- Yes

(7.73.3.7) Type of data used

Select from:

- Primary and secondary

(7.73.3.8) Data quality

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

Row 3

(7.73.3.1) Requesting member

Select from:

(7.73.3.2) Name of good/ service

There are currently no Vestas wind turbines being installed or under service contract by Vestas. As such, there is no significant / relevant CO2 emissions scope for the reporting year

(7.73.3.3) Scope

Select from:

Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

Cradle to grave

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

0

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

Yes

(7.73.3.7) Type of data used

Select from:

Primary and secondary

(7.73.3.8) Data quality

Not relevant.

Row 4

(7.73.3.1) Requesting member

Select from:

- Vattenfall Group

(7.73.3.2) Name of good/ service

Servicing of turbines in reporting year and where relevant, manufacture of new wind turbine components (i.e. production of wind turbines when a new wind plant is installed in the reporting year).

(7.73.3.3) Scope

Select from:

- Scope 1, 2 & 3

(7.73.3.4) Lifecycle stage

Select from:

- Cradle to grave

(7.73.3.5) Emissions at the lifecycle stage in kg CO2e per unit

2342

(7.73.3.6) Lifecycle stage under your ownership or control

Select from:

- Yes

(7.73.3.7) Type of data used

Select from:

- Primary and secondary

(7.73.3.8) Data quality

Vestas activity in the reporting year only relates to service operations for this customer. Direct Scope 1 Service related emissions are included relating to fuel use. Where relevant, Scope 2 emissions included relating to district heating. Scope 3 emissions for the manufacture of service components is also included. There are no new wind plant installations in the reporting year, so Scope 3 emissions for the manufacture of new wind turbine is not relevant.

[Add row]

(7.73.4) Please detail emissions reduction initiatives completed or planned for this product.

Row 1

(7.73.4.1) Name of good/ service

Vestas Service Repair and Refurbishment [Operational circularity]

(7.73.4.2) Initiative ID

Select from:

Initiative 9

(7.73.4.3) Description of initiative

Repair and refurbishment allow us to extend the lifespan of turbine components, reduce waste and cut GHG emissions by up to 55 percent compared to manufacturing new parts. Major turbine components, such as blades, gearboxes and generators, are already largely refurbished and reused.

(7.73.4.4) Completed or planned

Select from:

Completed

Row 2

(7.73.4.1) Name of good/ service

Electric service vans.

(7.73.4.2) Initiative ID

Select from:

- Initiative 6

(7.73.4.3) Description of initiative

At the end of 2024, 1,734 of the vehicles in our service fleet were renewably fuelled, out of 6,676 total vehicles in the fleet. In 2024, we also achieved a share of (PH)EVs in our benefit car fleet of 92 percent. We continue to invest in charging infrastructure across our main locations.

(7.73.4.4) Completed or planned

Select from:

- Ongoing

Row 4

(7.73.4.1) Name of good/ service

Reduced CO2-intensity steel product offering for towers as a product option for customers.

(7.73.4.2) Initiative ID

Select from:

- Initiative 1

(7.73.4.3) Description of initiative

The steel is scrap-based and produced in an electric arc furnace using only renewable energy. This promotes circularity and results in an emission reduction of 66% for heavy plates compared to conventional steel heavy plates. Steel and iron materials make up 80-90% of a turbine's mass and more than half of its total CO2e emissions on a lifecycle basis

(7.73.4.4) Completed or planned

Select from:

Completed

Row 5

(7.73.4.1) Name of good/ service

Recyclable blades.

(7.73.4.2) Initiative ID

Select from:

Initiative 2

(7.73.4.3) Description of initiative

Our blade circularity solution, developed in collaboration with partners of the CETEC project, enables the recovery and reuse of epoxy-infused blades and thereby eliminates the need for blade landfilling or incineration. The solution enhances our value proposition and improves auction competitiveness. We are currently working on industrialising the solution together with Stena Recycling and also work closely with customers to ensure its market viability.

(7.73.4.4) Completed or planned

Select from:

Ongoing

Row 6

(7.73.4.1) Name of good/ service

Sf6-free switchgears.

(7.73.4.2) Initiative ID

Select from:

Initiative 3

(7.73.4.3) Description of initiative

We are in compliance with regulation and phasing our SF6 switchgears.

(7.73.4.4) Completed or planned

Select from:

Ongoing

Row 7

(7.73.4.1) Name of good/ service

Wooden towers.

(7.73.4.2) Initiative ID

Select from:

Initiative 4

(7.73.4.3) Description of initiative

Vestas has invested in Modvion™ to scale-up laminated veneer lumber (LVL) towers. Modular and light, Modvion™ towers can be transported cost-effectively and enable taller towers in markets with high tip heights

(7.73.4.4) Completed or planned

Select from:

Ongoing

Row 8

(7.73.4.1) Name of good/ service

Blade recycling services.

(7.73.4.2) Initiative ID

Select from:

- Initiative 5

(7.73.4.3) Description of initiative

To address current recycling concerns economically and at scale, we offer customisable solutions (e.g. in the US) to enable blade recycling for repowering projects and wind farm retirement.

(7.73.4.4) Completed or planned

Select from:

- Ongoing

Row 9

(7.73.4.1) Name of good/ service

Methanol-powered crew transfer vessels (CTV) for offshore service.

(7.73.4.2) Initiative ID

Select from:

- Initiative 7

(7.73.4.3) Description of initiative

Methanol-powered CTV: - Collaboration with vessel supplier Northern Offshore Services (N-O-S) - Powered by 100% methanol. - Operating on renewable-methanol, emits an estimate of 97% less CO2, SOx emissions by up to 99% and NOx emissions by up to 60% emissions compared to a traditional vessel operating on MGO*

(7.73.4.4) Completed or planned

Select from:

- Ongoing

Row 10

(7.73.4.1) Name of good/ service

Hydrogen-powered crew transfer vessels (CTV) for offshore service

(7.73.4.2) Initiative ID

Select from:

Initiative 8

(7.73.4.3) Description of initiative

Hydrogen-powered CTV: Collaboration with vessel supplier Windcat Workboats Powered by a dual-fuel solution (hydrogen in combination with marine gas oil) Operating on hydrogen, resulted in 37% decrease in CO2e emissions than a traditional vessel

(7.73.4.4) Completed or planned

Select from:

Ongoing

[Add row]

(7.73.5) Have any of the initiatives described in 7.73.4 been driven by requesting CDP Supply Chain members?

Select from:

No

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

Yes

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

- Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

- The EU Taxonomy for environmentally sustainable economic activities

(7.74.1.3) Type of product(s) or service(s)

Power

- Seabed fixed offshore wind turbine

(7.74.1.4) Description of product(s) or service(s)

Since Tunø Knob in 1995, the industry's oldest commercial offshore installation still in operation, Vestas has been committed to harnessing the full potential of offshore wind. Continuously setting new standards with game-changing technologies to help drive down the cost of sustainable energy and meet the planet's future sustainable energy needs. As trusted partners in project engineering, installation, operations, service, and maintenance, we know what it takes to help our customers realise maximum offshore capability. With more than 25 years of experience we have a proven track record of +7 GW and +1,500 turbines installed across 45 projects, covering markets in the UK, Netherlands, Belgium, Sweden, Denmark, and Germany - and our floating experiences in markets like Portugal and Scotland.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

- Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

- Other, please specify :We calculate the amount of expected CO2e that will be avoided over the lifetime of the turbines produced and shipped in the year.

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

Use stage

(7.74.1.8) Functional unit used

Expected CO2e avoided over the lifetime of the capacity produced and shipped during the period (million t)

(7.74.1.9) Reference product/service or baseline scenario used

The global average intensity of electricity generations from the International Energy Agency

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

Use stage

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

26000000

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

The MW of turbines produced and shipped in the year are converted into MWh per year. This is then multiplied by the average capacity factor of the respective turbine types and the expected lifetime of the turbines in years based on design criteria and customer contracts. Finally, the global average intensity of electricity generations from the International Energy Agency is applied. The figure provided represents the combined avoided emissions from offshore wind in 2024 from produced and shipped offshore turbines.

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

21

Row 2

(7.74.1.1) Level of aggregation

Select from:

- Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

- The EU Taxonomy for environmentally sustainable economic activities

(7.74.1.3) Type of product(s) or service(s)

Power

- Onshore wind

(7.74.1.4) Description of product(s) or service(s)

More than 40 years experience, insights and knowledge of wind. Vestas wind turbines are checked and tested at our own test centres, after which the results are verified and certified by independent organisations. We also continuously monitor a large number of the turbines in operation, both to determine how the turbine design can be optimised and to use the data and knowledge to make turbine operation even more reliable and cost-effective. Vestas has an extensive portfolio of turbines which are each suited to specific conditions and requirements.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

- Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

- Other, please specify :We calculate the amount of expected CO2e that will be avoided over the lifetime of the turbines produced and shipped in the year.

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

Use stage

(7.74.1.8) Functional unit used

Expected CO2e avoided over the lifetime of the capacity produced and shipped during the period (million t)

(7.74.1.9) Reference product/service or baseline scenario used

The global average intensity of electricity generations from the International Energy Agency

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

Use stage

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

429000000

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

The MW of turbines produced and shipped in the year are converted into MWh per year. This is then multiplied by the average capacity factor of the respective turbine types and the expected lifetime of the turbines in years based on design criteria and customer contracts. Finally, the global average intensity of electricity generations from the International Energy Agency is applied. The figure provided represents the combined avoided emissions from onshore wind in 2024 from produced and shipped onshore turbines.

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

68

[Add row]

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

No

C10. Environmental performance - Plastics

(10.1) Do you have plastics-related targets, and if so what type?

(10.1.1) Targets in place

Select from:

Yes

(10.1.2) Target type and metric

Plastic polymers

Reduce or eliminate the use of hazardous substances

Plastic goods/products

Increase the proportion of plastic goods/products which are reusable

Reduce the total weight of virgin content in plastic goods/products

(10.1.3) Please explain

Vestas Sustainability strategy In 2020 Vestas launched the sustainability strategy, *Sustainability in Everything We Do*, which committed to the production of Zero-waste turbines by 2040. In 2021, we presented our Circular Economy Roadmap which defined the interim KPIs towards our Zero-waste commitment. Circularity and Zero-waste By 'zero waste', we mean preventing all waste and developing a circular economy for all materials, including the carbon cycle. A goal rather than a hard target, through circularity we aim to reuse, repair, remanufacture or recycle, without recourse to incineration or landfilling. This process encompasses all our own operations as well as our direct suppliers, covering design and procurement, production, construction, service and sales, and end-of-life solutions. Baseline and use of polymers By developing a quantified baseline, where available across the value-chain, we have set priorities and designed strategic initiatives that are implemented cross-functionally. In 2023 reporting year, Vestas consumed the following materials in turbines produced and shipped: 2024 tonnes materials (turbines-only):

Steel & iron 1,295,000 • Composites 105,000 • Polymers 68,000 • Aluminium 19,000 • Electrical/electronic 13,000 • Copper 11,000 •

Others 190,000 Polymers, including thermoset composites, are primarily used in the following applications: • Blades (~80%) • Covers, housings, electrical and other components (~20%) Primary use of polymer is for long-life engineering purposes, including electrical, mechanical components and for load bearing components such as composite blades, as well as covers for nacelle and hub. Polymer packaging consumption is very low compared to total polymer

consumption and is not a hot-spot area (below <1%) for Vestas. Circularity KPIs (including polymers) The following targets are specified by Vestas which focus on the important aspects for our circularity footprint. These KPIs focus directly on high impact areas for polymers i.e. blades, which is highest polymer consumption area for polymers and generation of polymer waste in supply-chain and own operations. Circularity: Material Efficiency in own operations • Ambition level: Improve material efficiency ratio by 90% per MW by 2030 • Reference: the EU environmental objective “Transition to a Circular Economy” as well as the United Nations Sustainable Development Goal 12 “Responsible Consumption and Production”. • Scope: total tonnes of non-recycled waste from Vestas own operations per MW wind turbines produced and shipped in the year. Non-recycled waste includes waste that is incinerated or landfilled. • Unit: tonnes waste per MW produced and shipped • KPI Baseline: 2021 - 2.0 • KPI Target: 2025 – 1.2 t/MW, 2030 – 0.2 t/MW Circularity: Increase recycling rate of waste (own operations) •

Ambition level: Zero landfill or incineration by 2040 • Reference: the EU environmental objective “Transition to a Circular Economy” as well as the United Nations Sustainable Development Goal 12 “Responsible Consumption and Production”. • Scope: total tonnes of non-recycled waste from Vestas own operations. Non-recycled waste includes waste that is incinerated or landfilled. • Unit: percentage (weight) recycled or reused (own operations) • KPI Baseline: 2020 – 52% • KPI Target: 2025 – 70%, 2030 – 94%, 2040 – 100% Circularity: Engage with suppliers on waste reduction • Ambition level: 50% waste reduction in supply-chain by 2030 • Reference: the EU environmental objective “Transition to a Circular Economy” as well as the United Nations Sustainable Development Goal 12 “Responsible Consumption and Production”. • Scope: Key and strategic suppliers have committed to set targets for (and report to Vestas) waste reduction in their own operations. Total tonnes of non-recycled waste from supplier own operations. Non-recycled waste includes waste that is incinerated or landfilled. • Unit: Number of committed suppliers • KPI Baseline: 2020 – Zero suppliers • KPI Target: 2023 – 70 key suppliers, 2025 – Strategic suppliers set targets for themselves and tier one suppliers, 2030 – 50% reduction in waste in supply-chain Circularity: Recyclability of wind turbine blades • Ambition level: 100% recyclable rotor (i.e. hub and blades) at end-of-life by 2030 • Reference: the EU environmental objective “Transition to a Circular Economy” as well as the United Nations Sustainable Development Goal 12 “Responsible Consumption and Production”. • Scope: total tonnes of non-recyclable rotor from Vestas for wind turbines produced and shipped in the year. Non-recycled waste includes waste that is incinerated or landfilled. • Unit: percentage (weight) recyclable • KPI Baseline: 2021 – 42% recyclable • KPI Target: 2030 – 100% recyclable, 2040 – 100% recyclable Reduction Initiatives of polymers Refer to Vestas annual sustainability report 2023 for details of global initiatives relating to these targets which are all in-progress and [Fixed row]

(10.2) Indicate whether your organization engages in the following activities.

Production/commercialization of plastic polymers (including plastic converters)

(10.2.1) Activity applies

Select from:

No

Production/commercialization of durable plastic goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

No

Usage of durable plastics goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

Yes

Production/commercialization of plastic packaging

(10.2.1) Activity applies

Select from:

No

Production/commercialization of goods/products packaged in plastics

(10.2.1) Activity applies

Select from:

No

Provision/commercialization of services that use plastic packaging (e.g., food services)

(10.2.1) Activity applies

Select from:

No

Provision of waste management and/or water management services

(10.2.1) Activity applies

Select from:

No

Provision of financial products and/or services for plastics-related activities

(10.2.1) Activity applies

Select from:

No

Other activities not specified

(10.2.1) Activity applies

Select from:

No

[Fixed row]

(10.4) Provide the total weight of plastic durable goods and durable components produced, sold and/or used, and indicate the raw material content.

	Total weight during the reporting year (Metric tons)	Raw material content percentages available to report	Please explain
Durable goods and durable components used	0	Select all that apply <input checked="" type="checkbox"/> None	We are not producing any plastic durable goods

[Fixed row]

C11. Environmental performance - Biodiversity

(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

(11.2.1) Actions taken in the reporting period to progress your biodiversity-related commitments

Select from:

Yes, we are taking actions to progress our biodiversity-related commitments

(11.2.2) Type of action taken to progress biodiversity- related commitments

Select all that apply

Other, please specify :In 2025, we conducted a full value chain biodiversity impact assessment to further enhance our understanding of our impact and to support the development of a global biodiversity action plan.

[Fixed row]

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?

	Does your organization use indicators to monitor biodiversity performance?
	<p>Select from:</p> <p><input checked="" type="checkbox"/> Yes, we use indicators</p>

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

	Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity	Comment
Legally protected areas	Select from: <input checked="" type="checkbox"/> Not assessed	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>
UNESCO World Heritage sites	Select from: <input checked="" type="checkbox"/> Yes	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>
UNESCO Man and the Biosphere Reserves	Select from: <input checked="" type="checkbox"/> No	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>
Ramsar sites	Select from: <input checked="" type="checkbox"/> Not assessed	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>
Key Biodiversity Areas	Select from: <input checked="" type="checkbox"/> Yes	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>
Other areas important for biodiversity	Select from: <input checked="" type="checkbox"/> Yes	<i>We have mapped all our factories in terms of proximity to Key Biodiversity areas, Natura 2000 areas and UNESCO World Heritage sites.</i>

[Fixed row]

(11.4.1) Provide details of your organization's activities in the reporting year located in or near to areas important for biodiversity.

Row 1

(11.4.1.2) Types of area important for biodiversity

Select all that apply

- Key Biodiversity Areas
- Other areas important for biodiversity

(11.4.1.4) Country/area

Select from:

Denmark

(11.4.1.5) Name of the area important for biodiversity

We have manufacturing activities close to 1) Odense Fjord, 2) Nakskov Fjord and Inderfjord, and 3) Ringkøbing Fjord.

(11.4.1.6) Proximity

Select from:

Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

We manufacture blades and assembly turbines in our facilities in Denmark.

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

No

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

Activities at all facilities have been assessed in consideration of the nearby biodiversity area. It has been concluded that it is only in the case of extreme events, such as a large fire, that there is a risk of a negative impact on the nearby biodiversity area. For all facilities where a slight risk of a potential risk is identified, global health, safety and environment is working with local health, safety and environment to further assess the risk and implement any necessary mitigation measures. However, current conclusion is not negative impact from the facilities on the local biodiversity areas.

Row 2

(11.4.1.2) Types of area important for biodiversity

Select all that apply

- Key Biodiversity Areas
- Other areas important for biodiversity

(11.4.1.4) Country/area

Select from:

- Germany

(11.4.1.5) Name of the area important for biodiversity

We have manufacturing activities close to Travemünde and Dassower See.

(11.4.1.6) Proximity

Select from:

- Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

We manufacture generators in the facility in Travemünde.

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

- No

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

Activities at all facilities have been assessed in consideration of the nearby biodiversity area. It has been concluded that it is only in the case of extreme events, such as a large fire, that there is a risk of a negative impact on the nearby biodiversity area. For all facilities where a slight risk of a potential risk is identified, global health, safety and environment is working with local health, safety and environment to further assess the risk and implement any necessary mitigation measures. However, current conclusion is not negative impact from the facilities on the local biodiversity areas.

Row 3

(11.4.1.2) Types of area important for biodiversity

Select all that apply

- Key Biodiversity Areas
- Other areas important for biodiversity

(11.4.1.4) Country/area

Select from:

- Poland

(11.4.1.5) Name of the area important for biodiversity

We have manufacturing activities close to Dolina Dolnej Odry.

(11.4.1.6) Proximity

Select from:

- Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

We assembly turbines in our facility in Polen

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

- No

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

Activities at all facilities have been assessed in consideration of the nearby biodiversity area. It has been concluded that it is only in the case of extreme events, such as a large fire, that there is a risk of a negative impact on the nearby biodiversity area. For all facilities where a slight risk of a potential risk is identified, global health, safety and environment is working with local health, safety and environment to further assess the risk and implement any necessary mitigation measures. However, current conclusion is not negative impact from the facilities on the local biodiversity areas.

Row 4

(11.4.1.2) Types of area important for biodiversity

Select all that apply

- Key Biodiversity Areas

(11.4.1.4) Country/area

Select from:

- United Kingdom of Great Britain and Northern Ireland

(11.4.1.5) Name of the area important for biodiversity

We have manufacturing activities close to Solent Marshes and Southampton Water

(11.4.1.6) Proximity

Select from:

- Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

We manufacture blades in our facilities in Isle of Wright

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

- No

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

Activities at all facilities have been assessed in consideration of the nearby biodiversity area. It has been concluded that it is only in the case of extreme events, such as a large fire, that there is a risk of a negative impact on the nearby biodiversity area. For all facilities where a slight risk of a potential risk is identified, global health, safety and environment is working with local health, safety and environment to further assess the risk and implement any necessary mitigation measures. However, current conclusion is not negative impact from the facilities on the local biodiversity areas.

[\[Add row\]](#)

C13. Further information & sign off

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

	Other environmental information included in your CDP response is verified and/or assured by a third party
	<i>Select from:</i> <input checked="" type="checkbox"/> Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

- Climate change
- Biodiversity

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance – Climate change

- Waste data
- Fuel consumption

- Renewable fuel consumption
- Target-setting methodology

- Product footprint
- Base year emissions
- Progress against targets
- Renewable Electricity/Steam/Heat/Cooling consumption
- Year on year change in emissions intensity (Scope 3)
- Year on year change in absolute emissions (Scope 1 and 2)
- Emissions breakdown by business division
- Electricity/Steam/Heat/Cooling generation
- Electricity/Steam/Heat/Cooling consumption

(13.1.1.3) Verification/assurance standard

General standards

- ISAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

Assured as part of Annual Report 2024 - refer to page 204

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Vestas Annual Report 2024_1.pdf

[\[Add row\]](#)

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

CEO and President of Vestas

(13.3.2) Corresponding job category

Select from:

Chief Executive Officer (CEO)

[Fixed row]

